spark als scala实现(二)

Vi  t1.txt

1,101,5.0
1,102,3.0
1,103,2.5
2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0
3,101,2.5
3,104,4.0
3,105,4.5
3,107,5.0
4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0
5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5

1.装载数据
scala> import org.apache.spark.mllib.recommendation.{ALS, Rating}
scala> val data = sc.textFile("hdfs://h201:9000/t1.txt")

2.解析原始数据
scala> val ratings = data.map(_.split(",") match { case Array(user, product, rate) =>
  Rating(user.toInt, product.toInt, rate.toDouble)}).cache()

3.查看用户和物品
val users = ratings.map(_.user).distinct()
val products = ratings.map(_.product).distinct()

4.训练数据
rank是模型中隐性因子的个数
scala> val rank = 3
scala> val lambda = 0.01
scala> val numIterations = 2
scala> val model = ALS.train(ratings, rank, numIterations, lambda)

用户评估
scala> val a1=model.userFeatures

商品评估
scala> val a2=model.productFeatures

5.评测
val usersProducts= ratings.map { case Rating(user, product, rate) => (user, product)}

预测
var predictions = model.predict(usersProducts).map { case Rating(user, product, rate) =>((user, product), rate)}

结果与 预测结果合并
val ratesAndPreds = ratings.map { case Rating(user, product, rate) =>((user, product), rate)}.join(predictions)

计算均方误差
val rmse= math.sqrt(ratesAndPreds.map { case ((user, product), (r1, r2)) =>
  val err = (r1 - r2)
  err * err
}.mean())
//  mean()方法,求均值

6.为用户1 ,推荐top3个商品
scala> val userid = 1
scala> val k=3  (推荐个数)
scala> val topKRecs = model.recommendProducts(userid, k)

scala> println(topKRecs.mkString("\n"))

查看用户的历史打分
val goodsForUser=ratings.keyBy(_.user).lookup(1)

7.查看用户下 对某商品的 预测分
val predictedRating = model.predict(1,105)

8.批量推荐
scala> val users = ratings.map(_.user).distinct()
scala> users.collect.flatMap { user =>
  model.recommendProducts(user, 3)}

Vi  t1.txt

1,101,5.0

1,102,3.0

1,103,2.5

2,101,2.0

2,102,2.5

2,103,5.0

2,104,2.0

3,101,2.5

3,104,4.0

3,105,4.5

3,107,5.0

4,101,5.0

4,103,3.0

4,104,4.5

4,106,4.0

5,101,4.0

5,102,3.0

5,103,2.0

5,104,4.0

5,105,3.5

1.装载数据

scala> import org.apache.spark.mllib.recommendation.{ALS, Rating}

scala> val data = sc.textFile("hdfs://h201:9000/t1.txt")

2.解析原始数据

scala> val ratings = data.map(_.split(",") match { case Array(user, product, rate) =>

Rating(user.toInt, product.toInt, rate.toDouble)}).cache()

3. 查看用户和物品

val users = ratings.map(_.user).distinct()

val products = ratings.map(_.product).distinct()

4. 训练数据

rank是模型中隐性因子的个数

scala> val rank = 3

scala> val lambda = 0.01

scala> val numIterations = 2

scala> val model = ALS.train(ratings, rank, numIterations, lambda)

用户评估

scala> val a1=model.userFeatures

商品评估

scala> val a2=model.productFeatures

5. 评测

val usersProducts= ratings.map { case Rating(user, product, rate) => (user, product)}

预测

var predictions = model.predict(usersProducts).map { case Rating(user, product, rate) =>((user, product), rate)}

结果与 预测结果合并

val ratesAndPreds = ratings.map { case Rating(user, product, rate) =>((user, product), rate)}.join(predictions)

计算均方误差

val rmse= math.sqrt(ratesAndPreds.map { case ((user, product), (r1, r2)) =>

val err = (r1 - r2)

err * err

}.mean())

mean()方法,求均值

6.为用户1 ,推荐top3个商品

scala> val userid = 1

scala> val k=3  (推荐个数)

scala> val topKRecs = model.recommendProducts(userid, k)

scala> println(topKRecs.mkString("\n"))

查看用户的历史打分

val goodsForUser=ratings.keyBy(_.user).lookup(1)

7.查看用户下 对某商品的 预测分

val predictedRating = model.predict(1,105)

8.批量推荐

scala> val users = ratings.map(_.user).distinct()

scala> users.collect.flatMap { user =>

model.recommendProducts(user, 3)}

原文地址:https://www.cnblogs.com/xiguage119/p/10722954.html

时间: 2024-10-06 20:01:58

spark als scala实现(二)的相关文章

Spark用Java实现二次排序的自定义key

本人在研究Spak,最近看了很多网上的对于SPARK用Java实现二次排序的方法,对于自定义key的做法 基本上都是实现Ordered<>接口,重写$greater.$greater$eq.$less.$less$eq.compare.compareTo方法,定义hashCode.equals····· 感觉好麻烦,其实我们自定义key只是用了里面的compareTo方法,其他的$greater.$greater$eq.$less.$less$eq.compare 不用做任何改动,hashCo

Spark机器学习实战 (十二) - 推荐系统实战

0 相关源码 将结合前述知识进行综合实战,以达到所学即所用.在推荐系统项目中,讲解了推荐系统基本原理以及实现推荐系统的架构思路,有其他相关研发经验基础的同学可以结合以往的经验,实现自己的推荐系统. 1 推荐系统简介 1.1 什么是推荐系统 1.2 推荐系统的作用 1.2.1 帮助顾客快速定位需求,节省时间 1.2.2 大幅度提高销售量 1.3 推荐系统的技术思想 1.3.1 推荐系统是一种机器学习的工程应用 1.3.2 推荐系统基于知识发现原理 1.4 推荐系统的工业化实现 Apache Spa

Spark之Scala学习

1. Scala集合学习: http://blog.csdn.net/lyrebing/article/details/20362227 2. scala实现kmeans算法 http://www.thinksaas.cn/group/topic/93852/ 3. Spark之Scala学习网站 http://spark.apache.org/docs/latest/mllib-decision-tree.html 4. Spark wordcount开发并提交到集群运行: http://ww

java+hadoop+spark+hbase+scala+kafka+zookeeper配置环境变量记录备忘

java+hadoop+spark+hbase+scala 在/etc/profile 下面加上如下环境变量 export JAVA_HOME=/usr/java/jdk1.8.0_102export JRE_HOME=/usr/java/jdk1.8.0_102/jreexport CLASSPATH=$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib:$JRE_HOME/libexport PATH=$JAVA_HOME

基于Spark ALS构建商品推荐引擎

基于Spark ALS构建商品推荐引擎 一般来讲,推荐引擎试图对用户与某类物品之间的联系建模,其想法是预测人们可能喜好的物品并通过探索物品之间的联系来辅助这个过程,让用户能更快速.更准确的获得所需要的信息,提升用户的体验.参与度以及物品对用户的吸引力. 在开始之前,先了解一下推荐模型的分类: 1.基于内容的过滤:利用物品的内容或是属性信息以及某些相似度定义,求出与该物品类似的物品 2.协同过滤:利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度 3.矩阵分解(包括显示矩阵分解.隐式矩阵

基于Spark ALS在线推荐系统

所用技术: Bootstrap.flat-ui . Servlet.Spark1.4.1.Hadoop2.6.0.JDK 说明:本系统不涉及ssh相关内容,只有简单的Servlet和JSP.HTML页面,系统架构相对简单. 系统部署: 1. 拷贝spark-assembly-1.4.1-hadoop2.6.0.jar到WebContent/WEB-INF/lib目录:(spark-assembly-1.4.1-hadoop2.6.0.jar文件由原生spark-assembly-1.4.1-ha

eclipse创建maven管理Spark的scala

说明,由于spark是用scala写的.因此,不管是在看源码还是在写spark有关的代码的时候,都最好是用scala.那么作为一个程序员首先是必须要把手中的宝剑给磨砺了.那就是创建好编写scala的代码环境.在这里由于我个人之前比较熟悉eclipse(虽然觉得他有点掉档次,踏实工具嘛,当然最好是选择自己最熟悉的辣).好了,那么我想实现的就是在eclipse中创建maven工程来管理spark的scala的代码.在这个过程中,遇到了几个问题: 1.如何在eclipse中安装scala的插件 安装s

Spark使用Scala语言进行实现,它是一种面向对象

Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处,Spark以其先进的设计理念,迅速成为社区的热门项目,围绕着Spark推出了Spark SQL.Spark Streaming.MLLib和GraphX等组件,也就是BDAS(伯克利数据分析栈),这些组件逐渐形成大数据处理一站式解决平台.从各方

Scala学习(二)--- 控制结构和函数

控制结构和函数 摘要: 本篇主要学习在Scala中使用条件表达式.循环和函数,你会看到Scala和其他编程语言之间一个根本性的差异.在Java或C++中,我们把表达式(比如3+4)和语句(比如if语句)看做两样不同的东西.表达式有值,而语句执行动作.在Scala中,几乎所有构造出来的语法结构都有值.这个特性使得程序更加精简,也更易读.本篇的要点包括: 1. 表达式有值 2. 块也有值,是它最后一个表达式的值 3. Scala的for循环就像是"增强版"的Java for循环 4. 分号