machine learning(13) --Regularization:Regularized linear regression

machine learning(13) --Regularization:Regularized linear regression

  • Gradient descent

    • without regularization

                  

    • with regularization

                   

      • θ0与原来是的没有regularization的一样
      • θ1-n和原来相比会稍微变小(1-αλ⁄m)<1
  • Normal equation

    • without regularization

               

    • with regularization

                       

  • 在normal equation中,当XTX不可逆时

        

    • 若m<=n时,会出现矩阵不可逆的情况
    • 虽然在octave中pinv当X不可逆时也可以计算,但如果使用的语言或者是使用inv这种时,当X不可逆时就无法计算
    • Regularization考虑到了这一点,当+后,矩阵一定可逆。
时间: 2024-11-10 07:44:24

machine learning(13) --Regularization:Regularized linear regression的相关文章

Machine Learning - week 2 - Multivariate Linear Regression

Gradient Descent in Practice - Feature Scaling Make sure features are on a similar scale. Features 的范围越小,总的可能性就越小,计算速度就能加快. Dividing by the range 通过 feature/range 使每个 feature 大概在 [-1, 1] 的范围内 下题是一个例子: Mean normalization 将值变为接近 0.除了 x0,因为 x0 的值为 1. mu

CheeseZH: Stanford University: Machine Learning Ex5:Regularized Linear Regression and Bias v.s. Variance

源码:https://github.com/cheesezhe/Coursera-Machine-Learning-Exercise/tree/master/ex5 Introduction: In this exercise, you will implement regularized linear regression and use it to study models with different bias-variance properties. 1. Regularized Lin

Regularized Linear Regression with scikit-learn

Regularized Linear Regression with scikit-learn Earlier we covered Ordinary Least Squares regression. In this posting we will build upon this foundation and introduce an important extension to linear regression, regularization, that makes it applicab

Machine Learning - VII. Regularization (Week 3)

http://blog.csdn.net/pipisorry/article/details/43966361 机器学习Machine Learning - Andrew NG courses学习笔记 The Problem of Overfitting Cost Function Regularized Linear Regression Regularized Logistic Regression from:http://blog.csdn.net/pipisorry/article/de

【模式识别与机器学习】——PART2 机器学习——统计学习基础——Regularized Linear Regression

来源:https://www.cnblogs.com/jianxinzhou/p/4083921.html 1. The Problem of Overfitting (1) 还是来看预测房价的这个例子,我们先对该数据做线性回归,也就是左边第一张图.如果这么做,我们可以获得拟合数据的这样一条直线,但是,实际上这并不是一个很好的模型.我们看看这些数据,很明显,随着房子面积增大,住房价格的变化趋于稳定或者说越往右越平缓.因此线性回归并没有很好拟合训练数据. 我们把此类情况称为欠拟合(underfit

Regularization in Linear Regression & Logistic Regression

一.正则化应用于基于梯度下降的线性回归 上一篇文章我们说过,通过正则化的思想,我们将代价函数附加了一个惩罚项,变成如下的公式: 那么我们将这一公式套用到线性回归的代价函数中去.我们说过,一般而言θ0我们不做处理,所以我们把梯度下降计算代价函数最优解的过程转化为如下两个公式. 我们通过j>0的式子,能够分析得出,θj 我们可以提取公因子,即将上式变成: 由于θj的系数小于1,可以看出, 正则化线性回归的梯度下降算法的变化在于,每次都在原有算法更新规则的 基础上令 θ 值减少了一个额外的值. 那么至

Andrew Ng Machine Learning - Week 3:Logistic Regression &amp; Regularization

此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记.力求简洁,仅代表本人观点,不足之处希望大家探讨. 课程网址:https://www.coursera.org/learn/machine-learning/home/welcome Week 1: Introduction 笔记:http://blog.csdn.net/ironyoung/article/details/46845233 We

Note for video Machine Learning and Data Mining——Linear Model

Here is the note for lecture three. the linear model Linear model is a basic and important model in machine learning. 1. input representation The data we get usually needs some changes, most of them is the input data. In linear model, input =(x1,x2,x

转载 Deep learning:三(Multivariance Linear Regression练习)

前言: 本文主要是来练习多变量线性回归问题(其实本文也就3个变量),参考资料见网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex3/ex3.html.其实在上一篇博文Deep learning:二(linear regression练习)中已经简单介绍过一元线性回归问题的求解,但是那个时候用梯度下降法求解时,给出的学习率是固定的0.7.而本次实验