题目:
Given a binary search tree, write a function kthSmallest
to find the kth
smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST‘s total elements.
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
解答:
《编程之美》中有讲过类似的题目:寻找数组(未排序)中的第K大数。这里是BST,已经有顺序,更方便一些。
- 如果左子树数目大于等于K,那么直接找左子树中第K个;
- 如果左子树数目等于 K-1,那么根节点就是第K个;
- 如果左子树数目小于K,那么直接找右子树中第(K - leftSum - 1)个(勿忘根节点)
关于左子树有多少结点?需要另一个递归程序计算。
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: int findNodeSum(TreeNode* root) { if (root == NULL) return 0; return (findNodeSum(root->left) + findNodeSum(root->right) + 1); } int kthSmallest(TreeNode* root, int k) { int leftSum = findNodeSum(root->left); if (leftSum >= k) return kthSmallest(root->left, k); else if (leftSum == k - 1) return root->val; else { return kthSmallest(root->right,k - leftSum - 1); } } };
题目到这儿还没完,如果BST总是在修改呢?
最好应该修改树结点的结构,增加一项属性:左子树的节点总数。这样搜索的复杂度就是 O (height)
版权声明:本文为博主原创文章,转载请联系我的新浪微博 @iamironyoung
时间: 2024-10-21 11:17:41