定义
高阶函数是指至少满足下列条件之一的函数:
- 函数可以作为参数被传递;
- 函数可以作为返回值输出。
JavaScript语言中的函数显然满足高阶函数的条件,在实际开发中,无论是将函数当作参数传递,还是让函数的执行结果返回另外一个函数,这两种情形都有很多应用场景,以下就是一些高阶函数的应用。
应用
一、作为参数传递
ajax异步请求
// callback为待传入的回调函数 var getUserInfo = function(userId, callback) { $.ajax("http://xxx.com/getUserInfo?" + userId, function(data) { if (typeof callback === "function") { callback(data); } }); } getUserInfo(13157, function(data) { alert (data.userName); });
Array.prototype.sort
Array.prototype.sort接受一个函数当作参数,这个函数里面封装了数组元素的排序规则。从Array.prototype.sort的使用可以看到,我们的目的是对数组进行排序,这是不变的部分;而使用什么规则去排序,则是可变的部分。把可变的部分封装在函数参数里,动态传入Array.prototype.sort,使Array.prototype.sort方法成为了一个非常灵活的方法。
//从小到大排列 [1, 4, 3].sort(function(a, b) { return a - b; }); // 输出: [1, 3, 4] //从大到小排列 [1, 4, 3].sort(function(a, b) { return b - a; }); // 输出: [4, 3, 1]
类似的数组方法还有map(),reduce(),filter(),详见此篇博客:JS中几种常见的高阶函数
二、作为返回值
判断数据的类型
var Type = {}; for (var i = 0, type; type = [‘String‘, ‘Array‘, ‘Number‘][i++];) { (function(type) { Type[‘is‘ + type] = function(obj) { return Object.prototype.toString.call(obj) === ‘[object ‘+ type +‘]‘; } })(type) }; Type.isArray([]); // 输出:true Type.isString("str"); // 输出:true
单例模式
var getSingle = function(fn) { var ret; return function() { return ret || (ret = fn.apply(this, arguments)); }; };
三、实现AOP
AOP(面向切面编程)的主要作用是:把一些跟核心业务逻辑模块无关的功能抽离出来,这些跟业务逻辑无关的功能通常包括日志统计、安全控制、异常处理等。把这些功能抽离出来之后,再通过“动态植入”的方式掺入业务逻辑模块中。
这样做的好处首先是可以保持业务逻辑模块的纯净和高内聚性,其次是可以很方便地复用日志统计等功能模块。
通常,在JavaScript中实现AOP,都是指把一个函数“动态植入”到另外一个函数之中,具体的实现技术有很多,下面的例子通过扩展Function.prototype来做到这一点。
Function.prototype.before = function(beforefn) { var __self = this; // 保存原函数的引用 return function() { // 返回包含了原函数和新函数的"代理"函数 beforefn.apply(this, arguments); // 执行新函数,修正this return __self.apply(this, arguments); // 执行原函数 } }; Function.prototype.after = function(afterfn) { var __self = this; return function() { var ret = __self.apply(this, arguments); afterfn.apply(this, arguments); return ret; } }; var func = function() { console.log(2); }; func = func.before(function() { console.log(1); }).after(function() { console.log(3); }); func(); // 按顺序打印出1,2,3
四、currying
currying(函数柯里化),又称部分求值。一个currying的函数首先会接受一些参数,接受了这些参数之后,该函数并不会立即求值,而是继续返回另外一个函数,刚才传入的参数在函数形成的闭包中被保存起来。待到函数被真正需要求值的时候,之前传入的所有参数都会被一次性用于求值。
// 通用currying函数,接受一个参数,即将要被currying的函数 var currying = function(fn) { var args = []; return function() { if (arguments.length === 0) { return fn.apply(this, args); } else { [].push.apply(args, arguments); return arguments.callee;// arguments.callee,指向当前函数的引用 } } }; // 将被currying的函数 var cost = (function() { var money = 0; return function() { for (var i = 0, l = arguments.length; i < l; i++) { money += arguments[i]; } return money; } })(); var cost = currying( cost ); // 转化成currying函数 cost( 100 ); // 未真正求值 cost( 200 ); // 未真正求值 cost( 300 ); // 未真正求值 console.log (cost()); // 求值并输出:600
五、uncurrying
在JavaScript中,当我们调用对象的某个方法时,其实不用去关心该对象原本是否被设计为拥有这个方法,这是动态类型语言的特点,也是常说的鸭子类型思想。
同理,一个对象也未必只能使用它自身的方法,那么有什么办法可以让对象去借用一个原本不属于它的方法呢?
答案对于我们来说很简单,call和apply都可以完成这个需求,因为用call和apply可以把任意对象当作this传入某个方法,这样一来,方法中用到this的地方就不再局限于原来规定的对象,而是加以泛化并得到更广的适用性。
而uncurrying的目的是将泛化this的过程提取出来,将fn.call或者fn.apply抽象成通用的函数。
// uncurrying实现 Function.prototype.uncurrying = function() { var self = this; return function() { return Function.prototype.call.apply(self, arguments); } }; // 将Array.prototype.push进行uncurrying,此时push函数的作用就跟Array.prototype.push一样了,且不仅仅局限于只能操作array对象。 var push = Array.prototype.push.uncurrying(); var obj = { "length": 1, "0": 1 }; push(obj, 2); console.log(obj); // 输出:{0: 1, 1: 2, length: 2}
六、函数节流
当一个函数被频繁调用时,如果会造成很大的性能问题的时候,这个时候可以考虑函数节流,降低函数被调用的频率。
throttle函数的原理是,将即将被执行的函数用setTimeout延迟一段时间执行。如果该次延迟执行还没有完成,则忽略接下来调用该函数的请求。
throttle函数接受2个参数,第一个参数为需要被延迟执行的函数,第二个参数为延迟执行的时间。
var throttle = function(fn, interval) { var __self = fn, // 保存需要被延迟执行的函数引用 timer, // 定时器 firstTime = true; // 是否是第一次调用 return function() { var args = arguments, __me = this; if (firstTime) { // 如果是第一次调用,不需延迟执行 __self.apply(__me, args); return firstTime = false; } if (timer) { // 如果定时器还在,说明前一次延迟执行还没有完成 return false; } timer = setTimeout(function() { // 延迟一段时间执行 clearTimeout(timer); timer = null; __self.apply(__me, args); }, interval || 500 ); }; }; window.onresize = throttle(function() { console.log(1); }, 500 );
事件结束
对于某些可以频繁触发的事件,有时候我们希望在事件结束后进行一系列操作。这时我们可以利用高阶函数做如下处理:
function debounce(fn, interval) { var timer = null; function delay() { var target = this; var args = arguments; return setTimeout(function(){ fn.apply(target, args); }, interval); } return function() { if (timer) {//如果定时器还存在,就清除 clearTimeout(timer); } timer = delay.apply(this, arguments); } }; window.onresize = debounce(function(){ console.log(‘resize end‘); }, 500);
七、分时函数
当一次的用户操作会严重地影响页面性能,如在短时间内往页面中大量添加DOM节点显然也会让浏览器吃不消,我们看到的结果往往就是浏览器的卡顿甚至假死。
这个问题的解决方案之一是下面的timeChunk函数,timeChunk函数让创建节点的工作分批进行,比如把1秒钟创建1000个节点,改为每隔200毫秒创建8个节点。
timeChunk函数接受3个参数,第1个参数是创建节点时需要用到的数据,第2个参数是封装了创建节点逻辑的函数,第3个参数表示每一批创建的节点数量。
var timeChunk = function(ary, fn, count) { var t; var start = function() { for ( var i = 0; i < Math.min( count || 1, ary.length ); i++ ){ var obj = ary.shift(); fn( obj ); } }; return function() { t = setInterval(function() { if (ary.length === 0) { // 如果全部节点都已经被创建好 return clearInterval(t); } start(); }, 200); // 分批执行的时间间隔,也可以用参数的形式传入 }; };
八、惰性加载函数
在Web开发中,因为浏览器之间的实现差异,一些嗅探工作总是不可避免。比如我们需要一个在各个浏览器中能够通用的事件绑定函数addEvent,常见的写法如下:
方案一:
var addEvent = function(elem, type, handler) { if (window.addEventListener) { return elem.addEventListener(type, handler, false); } if (window.attachEvent) { return elem.attachEvent(‘on‘ + type, handler); } };
缺点:当它每次被调用的时候都会执行里面的if条件分支,虽然执行这些if分支的开销不算大,但也许有一些方法可以让程序避免这些重复的执行过程。
方案二:
var addEvent = (function() { if (window.addEventListener) { return function(elem, type, handler) { elem.addEventListener(type, handler, false); } } if (window.attachEvent) { return function(elem, type, handler) { elem.attachEvent(‘on‘ + type, handler); } } })();
缺点:也许我们从头到尾都没有使用过addEvent函数,这样看来,一开始的浏览器嗅探就是完全多余的操作,而且这也会稍稍延长页面ready的时间。
方案三:
var addEvent = function(elem, type, handler) { if (window.addEventListener) { addEvent = function(elem, type, handler) { elem.addEventListener(type, handler, false); } } else if (window.attachEvent) { addEvent = function(elem, type, handler) { elem.attachEvent(‘on‘ + type, handler); } } addEvent(elem, type, handler); };
此时addEvent依然被声明为一个普通函数,在函数里依然有一些分支判断。但是在第一次进入条件分支之后,在函数内部会重写这个函数,重写之后的函数就是我们期望的addEvent函数,在下一次进入addEvent函数的时候,addEvent函数里不再存在条件分支语句。
原文地址:https://www.cnblogs.com/goloving/p/8370591.html