【集训试题】exam 信心考 最小割

题意概述:

有N个人,A,B两个考场。如果学生i在A考场,总信心值增加xi;如果学生i在B考场,总信心值增加yi。其中还有m对好友,当第i对好友的两个人都在A考场时,总信心值增加ai;如果两人都在B考场,总信心值增加bi;如果两个人在不同考场,那么总信心值减少ci。

问总信心值最大能达到多少(总信心值的初始值为0)。

N<=10000,M<=50000,time limit = 1s

分析:

可以很容易发现这是个网络流的问题,但是建模对于不是很熟练的人来说就有点难度了。比如当时考试的时候我有感觉是个最小割但是想不出来怎么建就去想最大费,但是怎么建图发现都是凉的。。。ORZ

最大费是正向的思路,做不出来就反着分析一下。可以发现总信心值的上限一开始是确定的,当一个学生确定在某个考场的时候对这个学生来说就失去了另外一种选择所可以获得的收益,即付出了一定代价。最小化代价等价于最大化了收益,于是可以转化为最小割。考虑到每个人只有两种状态,在A考场或者在B考场,那么就建立源点和汇点分别代表A考场和B考场。然后就开始欢乐连边。一条边容量的意义是当这条边被割掉的时候要付出多少代价。只要真正理解了这种运用最小割的思想实际上这个题也没什么难度。(由于有个除以2的问题导致容量变成浮点数所以连边的时候把所有的代价乘了2)

由于交代起来真的很麻烦就不再赘述了下面贴出代码。

  1 #include<iostream>
  2 #include<cstdio>
  3 #include<cstring>
  4 #include<cstdlib>
  5 #include<algorithm>
  6 #include<cmath>
  7 #include<queue>
  8 #include<set>
  9 #include<map>
 10 #include<vector>
 11 #include<cctype>
 12 #define inf 9e18
 13 using namespace std;
 14 const int maxn=10005;
 15 const int maxm=50005;
 16 typedef long long LL;
 17
 18 int N,M,A[maxn],B[maxn],S,T,tot;
 19 struct data{ int u,v,a,b,c; }C[maxm];
 20 struct net_edge{ int from,to,next; LL cap,flow; }NE[4*maxn+10*maxm];
 21 int nfirst[maxn],nnp,cur[maxn],fl[maxn],d[maxn],gap[maxn];
 22 int mq[maxn],front,rear;
 23
 24 void _scanf(int &x)
 25 {
 26     x=0;
 27     char ch=getchar();
 28     while(ch<‘0‘||ch>‘9‘) ch=getchar();
 29     while(ch>=‘0‘&&ch<=‘9‘) x=x*10+ch-‘0‘,ch=getchar();
 30 }
 31 void data_in()
 32 {
 33     _scanf(N);_scanf(M);
 34     for(int i=1;i<=N;i++) _scanf(A[i]);
 35     for(int i=1;i<=N;i++) _scanf(B[i]);
 36     for(int i=1;i<=M;i++){
 37         _scanf(C[i].u);_scanf(C[i].v);
 38         _scanf(C[i].a);_scanf(C[i].b);_scanf(C[i].c);
 39     }
 40 }
 41 void net_add_edge(int u,int v,LL cap)
 42 {
 43     NE[++nnp]=(net_edge){u,v,nfirst[u],cap,0};
 44     nfirst[u]=nnp;
 45     NE[++nnp]=(net_edge){v,u,nfirst[v],0,0};
 46     nfirst[v]=nnp;
 47 }
 48 void _net_add_edge(int u,int v,LL cap)
 49 {
 50     NE[++nnp]=(net_edge){u,v,nfirst[u],cap,0};
 51     nfirst[u]=nnp;
 52     NE[++nnp]=(net_edge){v,u,nfirst[v],cap,0};
 53     nfirst[v]=nnp;
 54 }
 55 void build_net()
 56 {
 57     S=N+1,T=N+2,tot=T;
 58     for(int i=1;i<=N;i++){
 59         net_add_edge(S,i,(LL)2*B[i]);
 60         net_add_edge(i,T,(LL)2*A[i]);
 61     }
 62     int u,v;
 63     for(int i=1;i<=M;i++){
 64         u=C[i].u,v=C[i].v;
 65         net_add_edge(S,u,(LL)C[i].b+C[i].c);
 66         net_add_edge(u,T,(LL)C[i].a+C[i].c);
 67         net_add_edge(S,v,(LL)C[i].b+C[i].c);
 68         net_add_edge(v,T,(LL)C[i].a+C[i].c);
 69         _net_add_edge(u,v,(LL)C[i].a+C[i].b+(LL)2*C[i].c);
 70     }
 71 }
 72 void BFS(int s)
 73 {
 74     for(int i=1;i<=tot;i++) d[i]=tot;
 75     front=rear=0;
 76     mq[rear++]=s;
 77     d[s]=0;
 78     int i,j;
 79     while(front!=rear){
 80         i=mq[front++];
 81         for(int p=nfirst[i];p;p=NE[p].next){
 82             j=NE[p].to;
 83             if(d[j]==tot) d[j]=d[i]+1,mq[rear++]=j;
 84         }
 85     }
 86 }
 87 LL augment(int s,int t)
 88 {
 89     int now=t; LL flow=inf;
 90     while(now!=s){
 91         flow=min(flow,NE[fl[now]].cap-NE[fl[now]].flow);
 92         now=NE[fl[now]].from;
 93     }
 94     now=t;
 95     while(now!=s){
 96         NE[fl[now]].flow+=flow,NE[(fl[now]-1^1)+1].flow-=flow;
 97         now=NE[fl[now]].from;
 98     }
 99     return flow;
100 }
101 LL ISAP(int s,int t)
102 {
103     memcpy(cur,nfirst,sizeof(cur));
104     BFS(t);
105     for(int i=1;i<=tot;i++) gap[d[i]]++;
106     LL maxflow=0; int now=s,j;
107     while(d[s]<tot){
108         if(now==t){
109             maxflow+=augment(s,t);
110             now=s;
111         }
112         bool ok=0;
113         for(int p=cur[now];p;p=NE[p].next){
114             j=NE[p].to;
115             if(d[j]+1==d[now]&&NE[p].cap>NE[p].flow){
116                 ok=1;
117                 cur[now]=fl[j]=p;
118                 now=j;
119                 break;
120             }
121         }
122         if(!ok){
123             int minl=tot;
124             for(int p=nfirst[now];p;p=NE[p].next){
125                 j=NE[p].to;
126                 if(d[j]+1<minl&&NE[p].cap>NE[p].flow) minl=d[j]+1;
127             }
128             if(--gap[d[now]]==0) break;
129             gap[d[now]=minl]++;
130             cur[now]=nfirst[now];
131             if(now!=s) now=NE[fl[now]].from;
132         }
133     }
134     return maxflow;
135 }
136 void work()
137 {
138     build_net();
139     LL sum=0;
140     for(int i=1;i<=N;i++) sum+=A[i],sum+=B[i];
141     for(int i=1;i<=M;i++)
142         sum+=C[i].a,sum+=C[i].b,sum+=C[i].c;
143     cout<<sum-ISAP(S,T)/2<<‘\n‘;
144 }
145 int main()
146 {
147     data_in();
148     work();
149     return 0;
150 }

原文地址:https://www.cnblogs.com/KKKorange/p/8445839.html

时间: 2024-08-30 18:26:21

【集训试题】exam 信心考 最小割的相关文章

[2016北京集训试题6]网络战争-[最小割树(网络流)+kd-tree+倍增]

Description A 联邦国有 N 个州,每个州内部都有一个网络系统,有若干条网络线路,连接各个 州内部的城市. 由于 A 国的州与州之间的关系不是太好,每个州都只有首府建立了到别的州的网络.具体来说,每个州的首府都只主动地建立了一条网络线路,连接到距离最近的州的 首府.(欧氏距离.如果有多个,选择标号最小的去连接) B 国探知了 A 国的网络线路分布情况,以及攻陷每条网络线路所需花费的代价,B 国首脑想知道断开 A 国某两个城市之间的网络连接,所需的最少代价.请你计算出来告 诉他. 注:

[六省联考2017]寿司餐厅(最小割)

题意 题目 思路 由得到的权值不重复可以看出这是一道最大权闭合子图问题 (反正我是没看出来),即最小割 可以看出,如果得到了权值\(d_{l,r}\),可以且必须得到权值\(d_{x,y},(l\leq x \leq y\leq r)\),必须要花费\([l,r]\)这一区间的代价,于是可以得到建图方法 将一个区间看做一个点 \(d_{l,r}>0\),\(ans\) \(+=d_{l,r}\),\(S\)向它连边,边权为\(d_{l,r}\),割掉这条边表示不选择这个值,产生\(d_{l,r}

[国家集训队2011]happiness(吴确) (最小割)

2017-08-09 19:03:49 [试题来源] 2011中国国家集训队命题答辩 [问题描述] 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文科或者理科,那么他们又将收获一些喜悦值.作为计算机竞赛教练的scp大老板,想知道如何分配可以使得全班的喜悦值总和最大. [输入格式] 第一行两个正整数n,m.接下来是六个矩阵第一个矩阵为n行m列 此矩阵的第i行

HDU 3061 Battle(最小割----最大权闭合图)

题目地址:HDU 3061 多校中遇到的最小割的最大权闭合模型花了一上午时间终于看懂啦. 最大权闭合图就是将一些互相有依赖关系的点转换成图,闭合图指的是在图中的每一个点的后继点都是在图内的. 还要明白简单割的概念,就是指所有的割边都与源点或汇点相连.然后让源点与正权点相连,汇点与负权点相连,权值均为其绝对值,有依赖关系的点连一条有向边,如果a必须在b的基础上,那么就连一条a->b的有向边,权值为INF.最后用所有正权值得和减去最小割的值就是答案. 具体证明可看胡伯涛大牛的国家队集训论文<最小割

最大權閉合子圖-最小割-網絡流

題目鏈接:這裡傳送 題目大意:給定一個n個數的序列,標號為1~n,有正有負,可以無數次操作:刪去一些數,條件是刪去編號為i的數同時,所有編號是i的整數倍的數都要被刪去.求剩下的數的和最大時的和,即剩下的sum最大. 解題思路:典型的最大權閉合子圖問題,有關知識的詳細可參考:我覺得最能看懂的博文 簡要介紹:如果選一個x,就必須要選另一個y,也就是綁定的話,建從x到y的容量為INF的邊,然後從S向所有正值x的點建容量為x的邊,從所有負值x向T建容量為|x|的邊,然後跑從S到T的最小割(最大流),用原

关于最小割的进一步理解

以前只知道最小割就是最大流...网络流背个模板,没了 根本没有深入理解,最近写了一些题才知道自己很 $naive$ 废话不多说,开始正题(假设大家都会网络流的代码,并且知道网络流在做什么) 首先最小割就是最大流(废话) 一条图的最小割中,一定有一些边,它们是满流的(如果不满流就不是最大流了) 不妨把这些边称作割边,显然,这些割边把图分成两个部分,一个与源点 $S$ 在同一个部分,一个与汇点 $T$在同一个部分 放图理解: 首先原图长这样: 然后一种最小割长这样(红色的是满流的边): 我们把与 $

【BZOJ2039】【2009国家集训队】人员雇佣 [最小割]

人员雇佣 Time Limit: 20 Sec  Memory Limit: 259 MB[Submit][Status][Discuss] Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作有一个贡献指数,(我们用Ei,j表示i经理对j经理的了解程度),即当经理i和经理j同时被雇佣时,经理i会对经理j做出贡献,使得所赚得的利润增加Ei,j.当然,雇佣每一个经理都需要花费一定的金钱Ai,对于一些经理可能他做出的贡献不值得

hdoj 4289 Control 【拆点 求最小割】

Control Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2295    Accepted Submission(s): 961 Problem Description You, the head of Department of Security, recently received a top-secret informati

There is a war (hdu 2435 最小割+枚举)

There is a war Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 970    Accepted Submission(s): 277 Problem Description There is a sea. There are N islands in the sea. There are some directional