【bzoj3456】城市规划 容斥原理+NTT+多项式求逆

题目描述

求出n个点的简单(无重边无自环)无向连通图数目mod 1004535809(479 * 2 ^ 21 + 1).

输入

仅一行一个整数n(<=130000)

输出

仅一行一个整数, 为方案数 mod 1004535809.

样例输入

3

样例输出

4



题解

容斥原理+NTT+多项式求逆

设 $f_i$ 表示 $i$ 个点的简单无向连通图的数目,$g_i$ 表示 $i$ 个点的简单无向图的数目。

根据定义得 $g_i=2^{\frac{n(n-1}2}$ 。

对于 $f_i$ ,考虑容斥,用 $g_i$ 减去不连通的方案数。枚举不连通图中1号点所在连通块大小 $j$ ,则有:

$f_i=g_i-\sum\limits_{j=1}^{i-1}C_{i-1}^{j-1}f_jg_{i-j}$

将组合数展开,得:

$f_i=g_i-\sum\limits_{j=1}^{i-1}\frac{(i-1)!}{(j-1)!(i-j)!}f_jg_{i-j}$

两边同时除以 $(i-1)!$ ,整理得:

$\frac{f_i}{(i-1)!}=\sum\limits_{j=1}^{i-1}\frac{f_j}{(j-1)!}\frac{g_{i-j}}{(i-j)!}$

设:

$F(x)=\sum\limits_{i=1}^{\infty}\frac{f_i}{(i-1)!}$

$G(x)=\sum\limits_{i=1}^{\infty}\frac{g_i}{(i-1)!}$

$H(x)=\sum\limits_{i=1}^{\infty}\frac{g_i}{i!}$

注意到 $F(x)$ 、$H(x)$ 的常数项均为0,因此后面的那个式子相当于 $\sum\limits_{j=0}^iF(x)[j]H(x)[i-j]$ ,是一个卷积的形式。

因此有:

$F(x)=G(x)-F(x)\times H(x)$

化简得:

$F(x)=\frac{G(x)}{H(x)+1}$

剩下的就好办了,根据定义求出 $G(x)$ 和 $H(x)+1$ ,使用多项式求逆求出 $H(x)+1$ 的逆,再与 $G(x)$ 求乘法即可得到 $F(x)$ 。

最后的答案就是 $F(x)[n]\times(n-1)!$ 。

时间复杂度 $O(n\log n)$

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 262200
#define mod 1004535809
using namespace std;
typedef long long ll;
ll A[N] , B[N] , C[N] , t[N] , fac[N >> 1];
inline ll pow(ll x , ll y)
{
    ll ans = 1;
    while(y)
    {
        if(y & 1) ans = ans * x % mod;
        x = x * x % mod , y >>= 1;
    }
    return ans;
}
void ntt(ll *a , int n , int flag)
{
    int i , j , k;
    for(i = k = 0 ; i < n ; i ++ )
    {
        if(i > k) swap(a[i] , a[k]);
        for(j = n >> 1 ; (k ^= j) < j ; j >>= 1);
    }
    for(k = 2 ; k <= n ; k <<= 1)
    {
        ll wn = pow(3 , (mod - 1) / k);
        if(flag == -1) wn = pow(wn , mod - 2);
        for(i = 0 ; i < n ; i += k)
        {
            ll w = 1 , t;
            for(j = i ; j < i + (k >> 1) ; j ++ , w = w * wn % mod)
                t = w * a[j + (k >> 1)] % mod , a[j + (k >> 1)] = (a[j] - t + mod) % mod , a[j] = (a[j] + t) % mod;
        }
    }
    if(flag == -1)
    {
        k = pow(n , mod - 2);
        for(i = 0 ; i < n ; i ++ ) a[i] = a[i] * k % mod;
    }
}
void inv(ll *a , ll *b , int n)
{
    if(n == 1)
    {
        b[0] = 1;
        return;
    }
    int i;
    inv(a , b , n >> 1);
    memcpy(t , a , sizeof(ll) * n);
    ntt(t , n << 1 , 1);
    ntt(b , n << 1 , 1);
    for(i = 0 ; i < n << 1 ; i ++ ) b[i] = b[i] * (2 - t[i] * b[i] % mod + mod) % mod;
    ntt(b , n << 1 , -1);
    memset(b + n , 0 , sizeof(ll) * n);
}
int main()
{
    int n , i , len = 1;
    scanf("%d" , &n);
    fac[0] = A[0] = 1;
    for(i = 1 ; i <= n ; i ++ )
    {
        fac[i] = fac[i - 1] * i % mod;
        A[i] = pow(2 , (ll)i * (i - 1) / 2) * pow(fac[i] , mod - 2) % mod;
        B[i] = pow(2 , (ll)i * (i - 1) / 2) * pow(fac[i - 1] , mod - 2) % mod;
    }
    while(len <= n) len <<= 1;
    inv(A , C , len);
    ntt(B , len , 1);
    ntt(C , len , 1);
    for(i = 0 ; i < len ; i ++ ) B[i] = B[i] * C[i] % mod;
    ntt(B , len , -1);
    printf("%lld\n" , B[n] * fac[n - 1] % mod);
    return 0;
}

原文地址:https://www.cnblogs.com/GXZlegend/p/8596008.html

时间: 2024-10-09 07:21:33

【bzoj3456】城市规划 容斥原理+NTT+多项式求逆的相关文章

【BZOJ 3456】 3456: 城市规划 (NTT+多项式求逆)

3456: 城市规划 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 658  Solved: 364 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通. 为了省钱, 每两个城市之间最多只能有一条直接的贸易路径. 对于两个建立路线的方案, 如果存在一个城市对, 在两个方案中是否建立路线不一

bzoj 3456: 城市规划【NTT+多项式求逆】

参考:http://blog.miskcoo.com/2015/05/bzoj-3456 首先推出递推式(上面的blog讲的挺清楚的),大概过程是正难则反,设g为n个点的简单(无重边无自环)无向图数目,显然边数是\( C_{n}^{2} \),所以\( g(n)=2^{C_{n}^{2}} \),那么f[n]=g[n]-n个点的简单(无重边无自环)无向不连通图数目,后面那部分可以枚举1所在联通块的1点数,当这个块有i个点时,方案数为从n-1个点中选出i-1个(减去点1)* f[i](这i个点组成

NTT+多项式求逆+多项式开方(BZOJ3625)

定义多项式h(x)的每一项系数hi,为i在c[1]~c[n]中的出现次数. 定义多项式f(x)的每一项系数fi,为权值为i的方案数. 通过简单的分析我们可以发现:f(x)=2/(sqrt(1-4h(x))+1) 于是我们需要多项式开方和多项式求逆. 多项式求逆: 求B(x),使得A(x)*B(x)=1 (mod x^m) 考虑倍增. 假设我们已知A(x)*B(x)=1 (mod x^m),要求C(x),使得A(x)*C(x)=1 (mod x^(2m)) 简单分析可得C(x)=B(x)*(2-A

luoguP4512 【模板】多项式除法 NTT+多项式求逆+多项式除法

Code: #include<bits/stdc++.h> #define maxn 300000 #define ll long long #define MOD 998244353 #define setIO(s) freopen(s".in","r",stdin) ,freopen(s".out","w",stdout) using namespace std; namespace poly{ #define

Luogu5205 【模板】多项式开根(NTT+多项式求逆)

https://www.cnblogs.com/HocRiser/p/8207295.html 安利! 写NTT把i<<=1写成了i<<=2,又调了一年.发现我的日常就是数组开小调调调,变量名写错调调调,反向判if调调调,退役吧. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include&

【bzoj3456】城市规划(多项式求逆+dp)

Description 求\(~n~\)个点组成的有标号无向连通图的个数.\(~1 \leq n \leq 13 \times 10 ^ 4~\). Solution 这道题的弱化版是poj1737, 其中\(n \leq 50\), 先来解决这个弱化版的题.考虑\(~dp~\),直接统计答案难以入手,于是考虑容斥.显然有,符合条件的方案数\(=\)所有方案数\(-\)不符合条件的方案数,而这个不符合条件的方案数就是图没有完全联通的情况.设\(~dp_i~\)表示\(~i~\)个点组成的合法方案

【BZOJ】4555: [Tjoi2016&amp;Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT

[题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016&Heoi2016]求和-NTT-多项式求逆 $ans=\sum_{i=0}^{n}\sum_{j=0}^{i}s(i,j)*2^j*j!$ 令$g(n)=\sum_{j=0}^{n}s(n,j)*2^j*j!$ 则ans是Σg(i),只要计算出g(i)的生成函数就可以统计答案. g(n)可以理解为将n个数划分

多项式求逆 学习总结

感觉蒟蒻现在学多项式求逆貌似有些晚了 不过真的很有意思了(然而省选的时候自己还在玩泥巴什么也不会 多项式求逆是基于倍增的 假设我们知道 h(x)f(x)=1(mod x^n) 移项得 (h(x)*f(x)-1)=0(mod x^n) 两边同时求平方得 h(x)^2*f(x)^2 - 2*h(x)*f(x) +1 = 0 (mod x^2n) 设g(x)*f(x)=1(mod x^2n) 两边同时乘以g(x)可以得 h(x)^2*f(x) -2*h(x) + g(x) =0 (mod x^2n)

Nescafe41 ProblemA 异化多肽 多项式求逆

题目大意:. 思路: 搞出C的生成函数F(x),那么: 长度为1的答案为F(x) 长度为2的答案为F2(x) - 故最终的答案为 F(x)+F2(x)+F3(x)+... =1?F+∞(x)1?F(x) =11?F(x) 然后就是多项式求逆了= = 跪picks大毒瘤 #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define M (263000&