落谷P3941 入阵曲

题目背景

pdf题面和大样例链接:http://pan.baidu.com/s/1cawM7c 密码:xgxv

丹青千秋酿,一醉解愁肠。
无悔少年枉,只愿壮志狂。 

题目描述

小 F 很喜欢数学,但是到了高中以后数学总是考不好。

有一天,他在数学课上发起了呆;他想起了过去的一年。一年前,当他初识算法竞赛的 时候,觉得整个世界都焕然一新。这世界上怎么会有这么多奇妙的东西?曾经自己觉得难以 解决的问题,被一个又一个算法轻松解决。

小 F 当时暗自觉得,与自己的幼稚相比起来,还有好多要学习的呢。

一年过去了,想想都还有点恍惚。

他至今还能记得,某天晚上听着入阵曲,激动地睡不着觉,写题写到鸡鸣时分都兴奋不 已。也许,这就是热血吧。

也就是在那个时候,小 F 学会了矩阵乘法。让两个矩阵乘几次就能算出斐波那契数列的 第 10^{100}10100 项,真是奇妙无比呢。

不过,小 F 现在可不想手算矩阵乘法——他觉得好麻烦。取而代之的,是一个简单的小 问题。他写写画画,画出了一个 n \times mn×m 的矩阵,每个格子里都有一个不超过 kk 的正整数。

小 F 想问问你,这个矩阵里有多少个不同的子矩形中的数字之和是 kk 的倍数? 如果把一个子矩形用它的左上角和右下角描述为 (x_1,y_1,x_2,y_2)(x1?,y1?,x2?,y2?),其中x_1 \le x_2,y_1 \le y_2x1?≤x2?,y1?≤y2?; 那么,我们认为两个子矩形是不同的,当且仅当他们以 (x_1,y_1,x_2,y_2)(x1?,y1?,x2?,y2?) 表示时不同;也就是 说,只要两个矩形以 (x_1,y_1,x_2,y_2)(x1?,y1?,x2?,y2?) 表示时相同,就认为这两个矩形是同一个矩形,你应该 在你的答案里只算一次。

输入输出格式

输入格式:

从标准输入中读入数据。

输入第一行,包含三个正整数 n,m,kn,m,k。

输入接下来 nn 行,每行包含 mm 个正整数,第 ii 行第 jj 列表示矩阵中第 ii 行第 jj 列 中所填的正整数 a_{i,j}ai,j?。

输出格式:

输出到标准输出中。

输入一行一个非负整数,表示你的答案。

输入输出样例

输入样例#1: 复制

2 3 2
1 2 1
2 1 2

输出样例#1: 复制

6

说明

【样例 1 说明】

这些矩形是符合要求的: (1, 1, 1, 3),(1, 1, 2, 2),(1, 2, 1, 2),(1, 2, 2, 3),(2, 1, 2, 1),(2, 3, 2, 3)。

子任务会给出部分测试数据的特点。如果你在解决题目中遇到了困难,可以尝试只解 决一部分测试数据。

每个测试点的数据规模及特点如下表:

特殊性质:保证所有 a_{i,j}ai,j? 均相同。

题解:

  这个题目我们先考虑套路一下,记一下每一列的前缀合,然后枚举两行,把两行之间的数字压缩成一个数,这样就变成了一个序列问题,对答案有贡献的区间只有满足(sum[r]-sum[l-1])%k==0,即sum[r]%k==sum[l-1]%k,所以我们开一个sum的桶,每次查询和sum[r]%k相同的右端点个数就可以了。

题外话:

  很久没有发博客了,因为都在做学校内部的题目,不方便发出来,真是,自己回来看博客的时候,发现虽然自己没动,但很多东西都变了。

代码:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#define RG register
#define ll long long
#define MAXN 410
using namespace std;
ll sum[MAXN][MAXN],a[MAXN][MAXN],tong[1000100],sum2[MAXN],ans;
int n,m,k;

inline void work(int l,int r){
  for(RG int i=1;i<=m;i++){
    ll now=sum[i][r]-sum[i][l-1];
    sum2[i]=(sum2[i-1]+now)%k;
    tong[sum2[i-1]]++;
    ans+=tong[sum2[i]];
  }
  for(RG int i=0;i<=m-1;i++){
    tong[sum2[i]]--;
    sum2[i]=0;
  }
}

int main()
{
  scanf("%d%d%d",&n,&m,&k);
  for(int i=1;i<=n;i++){
    for(int j=1;j<=m;j++) scanf("%lld",&a[i][j]);
  }
  for(RG int j=1;j<=m;j++){
    for(RG int i=1;i<=n;i++){
      sum[j][i]=sum[j][i-1]+a[i][j];
    }
  }
  for(RG int l=1;l<=n;l++){
    for(RG int r=l;r<=n;r++){
      work(l,r);
    }
  }
  printf("%lld",ans);
  return 0;
}
时间: 2024-11-11 23:09:11

落谷P3941 入阵曲的相关文章

洛谷P3941入阵曲

洛谷P3941入阵曲 [题目描述] 丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂. 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时候,觉得整个世界都焕然一新.这世界上怎么会有这么多奇妙的东西?曾经自己觉得难以 解决的问题,被一个又一个算法轻松解决. 小 F 当时暗自觉得,与自己的幼稚相比起来,还有好多要学习的呢. 一年过去了,想想都还有点恍惚. 他至今还能记得,某天晚上听着入阵曲,激动地睡不着觉,写题写到

落谷P1872 回文串计数(回文树)

传送门 这道题显然可以用PAM做出来. PAM可以算出以字符串的第ii个字符为结尾的回文子串的个数.我们将其存到一个数组l[n],再求一个前缀和就可以把字符串的前i个字符的前缀有多少个回文子串求出来. 然后,我们将PAM清空,倒着做一遍,就可以求出以第i个字符为左端点的回文子串个数r[i].与它不相交的回文子串且在它前面的子串有l[i - 1]个,相乘再累加就是答案. 此题在落谷的评级是绿,那是因为此题数据范围只有2000,不用PAM也可以做.但此题可以当做PAM入门的练手题. #include

luogu P3941 入阵曲

题目背景 pdf题面和大样例链接:http://pan.baidu.com/s/1cawM7c 密码:xgxv 丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂. 题目描述 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时候,觉得整个世界都焕然一新.这世界上怎么会有这么多奇妙的东西?曾经自己觉得难以 解决的问题,被一个又一个算法轻松解决. 小 F 当时暗自觉得,与自己的幼稚相比起来,还有好多要学习的呢. 一年过

P3941 入阵曲

\(\color{#0066ff}{ 题目描述 }\) 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时候,觉得整个世界都焕然一新.这世界上怎么会有这么多奇妙的东西?曾经自己觉得难以 解决的问题,被一个又一个算法轻松解决. 小 F 当时暗自觉得,与自己的幼稚相比起来,还有好多要学习的呢. 一年过去了,想想都还有点恍惚. 他至今还能记得,某天晚上听着入阵曲,激动地睡不着觉,写题写到鸡鸣时分都兴奋不 已.也许,这就

落谷P1101 单词方阵 //参考代码

1 #include<iostream> 2 #include <cstdio> 3 #include <cstring> 4 using namespace std; 5 const int N = 105; 6 char s[N][N], a[] = "yizhong"; 7 bool vis[N][N]; 8 int n; 9 int dx[8] = {0, 0, 1, -1, 1, 1, -1, -1}, 10 dy[8] = {1, -1,

落谷P1101 单词方阵 //未完成

1 #include<iostream>/*cout<<endl; 2 for(int i=1;i<=n;i++) 3 for(int j=0;j<n;j++){ 4 5 cout<<a[i][j]; 6 if(j==n-1)cout<<endl; 7 }*/ 8 #include<cstring> 9 #include<cstdio> 10 using namespace std; 11 const int wd=101

AC日记——组合数问题 落谷 P2822 noip2016day2T1

题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算组合数的一般公式: 其中n! = 1 × 2 × · · · × n 小葱想知道如果给定n,m和k,对于所有的0 <= i <= n,0 <= j <= min(i,m)有多少对 (i,j)满足是k的倍数. 输入输出格式 输入格式: 第一行有两个整数t,k,其中t代表该测试点总共有多少

落谷 2196 挖地雷

题面: 题目描述 在一个地图上有N个地窖(N<=20),每个地窖中埋有一定数量的地雷.同时,给出地窖之间的连接路径.当地窖及其连接的数据给出之后,某人可以从任一处开始挖地雷,然后可以沿着指出的连接往下挖(仅能选择一条路径),当无连接时挖地雷工作结束.设计一个挖地雷的方案,使某人能挖到最多的地雷. 输入输出格式 输入格式: 第1行只有一个数字,表示地窖的个数N. 第2行有N个数,分别表示每个地窖中的地雷个数. 第3行至第N+1行表示地窖之间的连接情况: 第3行有n-1个数(0或1),表示第一个地窖

落谷P1003 题解

题面 思路一:纯模拟.(暴力不是满分) 思路: 1.定义一个二维数组. 2.根据每个数据给二维数组赋值. 3.最后输出那个坐标的值. 思路二(正规思路): 逆序找,因为后来的地毯会覆盖之前的,一发现有解就输出 原文地址:https://www.cnblogs.com/kamimxr/p/11274467.html