似然函数

原文地址:http://blog.csdn.net/sunlylorn/article/details/19610589

数理统计学中,似然函数是一种关于统计模型中的参数函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或“概率”又有明确的区分。概率用于在已知一些参数的情况下,预测接下来的观测所得到的结果,而似然性则是用于在已知某些观测所得到的结果时,对有关事物的性质的参数进行估计。

在这种意义上,似然函数可以理解为条件概率的逆反。在已知某个参数B时,事件A会发生的概率写作:

利用贝叶斯定理

因此,我们可以反过来构造表示似然性的方法:已知有事件A发生,运用似然函数,我们估计参数B的可能性。形式上,似然函数也是一种条件概率函数,但我们关注的变量改变了:

注意到这里并不要求似然函数满足归一性:。一个似然函数乘以一个正的常数之后仍然是似然函数。对所有,都可以有似然函数:

例子

两次投掷都正面朝上时的似然函数

考虑投掷一枚硬币的实验。通常来说,已知投出的硬币正面朝上和反面朝上的概率各自是,便可以知道投掷若干次后出现各种结果的可能性。比如说,投两次都是正面朝上的概率是0.25。用条件概率表示,就是:

其中H表示正面朝上。

在统计学中,我们关心的是在已知一系列投掷的结果时,关于硬币投掷时正面朝上的可能性的信息。
我们可以建立一个统计模型:假设硬币投出时会有 的概率正面朝上,而有 的概率反面朝上。
这时,条件概率可以改写成似然函数:

也就是说,对于取定的似然函数,在观测到两次投掷都是正面朝上时, 的似然性是0.25(这并不表示当观测到两次正面朝上时 的概率是0.25)。

如果考虑,那么似然函数的值也会改变。

三次投掷中头两次正面朝上,第三次反面朝上时的似然函数

注意到似然函数的值变大了。
这说明,如果参数 的取值变成0.6的话,结果观测到连续两次正面朝上的概率要比假设 时更大。也就是说,参数 取成0.6 要比取成0.5 更有说服力,更为“合理”。总之,似然函数的重要性不是它的具体取值,而是当参数变化时函数到底变小还是变大。对同一个似然函数,如果存在一个参数值,使得它的函数值达到最大的话,那么这个值就是最为“合理”的参数值。

在这个例子中,似然函数实际上等于:

, 其中

如果取,那么似然函数达到最大值1。也就是说,当连续观测到两次正面朝上时,假设硬币投掷时正面朝上的概率为1是最合理的。

类似地,如果观测到的是三次投掷硬币,头两次正面朝上,第三次反面朝上,那么似然函数将会是:

, 其中T表示反面朝上,

这时候,似然函数的最大值将会在的时候取到。也就是说,当观测到三次投掷中前两次正面朝上而后一次反面朝上时,估计硬币投掷时正面朝上的概率是最合理的。

应用

最大似然估计

最大似然估计是似然函数最初也是最自然的应用。上文已经提到,似然函数取得最大值表示相应的参数能够使得统计模型最为合理。从这样一个想法出发,最大似然估计的做法是:首先选取似然函数(一般是概率密度函数概率质量函数),整理之后求最大值。实际应用中一般会取似然函数的对数作为求最大值的函数,这样求出的最大值和直接求最大值得到的结果是相同的。似然函数的最大值不一定唯一,也不一定存在。与矩法估计比较,最大似然估计的精确度较高,信息损失较少,但计算量较大。

似然比检验

似然比检验是利用似然函数来检测某个假设(或限制)是否有效的一种检验。一般情况下,要检测某个附加的参数限制是否是正确的,可以将加入附加限制条件的较复杂模型的似然函数最大值与之前的较简单模型的似然函数最大值进行比较。如果参数限制是正确的,那么加入这样一个参数应当不会造成似然函数最大值的大幅变动。一般使用两者的比例来进行比较,这个比值是卡方分配

尼曼-皮尔森引理说明,似然比检验是所有具有同等显著性差异的检验中最有统计效力的检验。

参考来源

时间: 2024-11-13 10:56:57

似然函数的相关文章

机器学习中的贝叶斯方法---先验概率、似然函数、后验概率的理解及如何使用贝叶斯进行模型预测(2)

在 机器学习中的贝叶斯方法---先验概率.似然函数.后验概率的理解及如何使用贝叶斯进行模型预测(1)文章中介绍了先验分布和似然函数,接下来,将重点介绍后验概率,以及先验概率.似然函数.后验概率三者之间的关系---贝叶斯公式. 在这篇文章中,我们通过最大化似然函数求得的参数 r 与硬币的抛掷次数(抛掷次数是10,求得的r=0.9)有关,为了更好地描述 参数 r 与 抛掷次数之间的关系,对下面符号作一些说明: 参数 r :抛一次硬币出现正面的概率,显然 r 的取值范围为[0,1] yN,在N次抛硬币

线性回归,逻辑回归的学习(包含最小二乘法及极大似然函数等)

博文参考了以下两位博主的文章:http://blog.csdn.net/lu597203933/article/details/45032607,http://blog.csdn.net/viewcode/article/details/8794401 回归问题的前提: 1) 收集的数据 2) 假设的模型,即一个函数,这个函数里含有未知的参数,通过学习,可以估计出参数.然后利用这个模型去预测/分类新的数据. 1. 线性回归 假设 特征 和 结果 都满足线性.即不大于一次方.这个是针对 收集的数据

似然函数的概念

在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性. 似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等.“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或“概率”又有明确的区分. 概率 用于在已知一些参数的情况下,预测接下来的观测所得到的结果,而 似然性 则是用于在已知某些观测所得到的结果时,对有关事物的性质的参数进行估计. 在这种意义上,似然函数可以理解为条件概率的逆反. 在已知某

先验概率、后验概率、似然估计,似然函数、贝叶斯公式

联合概率的乘法公式: (如果随机变量是独立的,则)  由乘法公式可得条件概率公式:, , 全概率公式:,其中 (,则,则可轻易推导出上式) 贝叶斯公式: 又名后验概率公式.逆概率公式:后验概率=似然函数×先验概率/证据因子.解释如下,假设我们根据“手臂是否很长”这个随机变量(取值为“手臂很长”或“手臂不长”)的观测样本数据来分析远处一个生物是猩猩类别还是人类类别(假设总共只有这2种类别).我们身处一个人迹罕至的深山老林里,且之前就有很多报道说这里有猩猩出没,所以无需观测样本数据就知道是猩猩的先验

对似然函数的理解

一直对贝叶斯里面的似然函数(likelihood function),先验概率(prior),后验概率(posterior)理解得不是很好,今天仿佛有了新的理解,记录一下. 看论文的时候读到这样一句话: 原来只关注公式,所以一带而过.再重新看这个公式前的描述,细思极恐. the likelihood function of the parameters θ = {w,α,β} given the observations D can be factored as.. 两个疑问:likelihoo

先验概率、似然函数与后验概率

先验概率 Prior probability 在贝叶斯统计中,先验概率分布,即关于某个变量 p 的概率分布,是在获得某些信息或者依据前,对 p 的不确定性进行猜测.例如, p 可以是抢火车票开始时,抢到某一车次的概率.这是对不确定性(而不是随机性)赋予一个量化的数值的表征,这个量化数值可以是一个参数,或者是一个潜在的变量. 先验概率仅仅依赖于主观上的经验估计,也就是事先根据已有的知识的推断, 在应用贝叶斯理论时,通常将先验概率乘以似然函数(likelihoodfunction)再归一化后,得到后

[转]如何理解似然函数

作者:Yeung Evan链接:https://www.zhihu.com/question/54082000/answer/145495695来源:知乎 在英语语境里,likelihood 和 probability 的日常使用是可以互换的,都表示对机会 (chance) 的同义替代.但在数学中,probability 这一指代是有严格的定义的,即符合柯尔莫果洛夫公理 (Kolmogorov axioms) 的一种数学对象(换句话说,不是所有的可以用0到1之间的数所表示的对象都能称为概率),而

线性回归-误差,似然函数

一.线性回归 在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析.这种函数是一个或多个称为回归系数的模型参数的线性组合. 回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析.如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析. 下面我们来举例何为一元线性回归分析,图1为某地区的房屋面积(feet

先验概率、后验概率、似然函数与机器学习中概率模型(如逻辑回归)的关系理解

看了好多书籍和博客,讲先验后验.贝叶斯公式.两大学派.概率模型.或是逻辑回归,讲的一个比一个清楚 ,但是联系起来却理解不能 基本概念如下 先验概率:一个事件发生的概率 \[P(y)\] 后验概率:一个事件在另一个事件发生条件下的条件概率 \[P(y|x)\] 贝叶斯公式:联合概率公式直接能推导出来的,代表什么意义?不放在具体问题中代表不了任何意义 \[P(y|x) = \frac{{P(x|y)P(y)}}{{P(x)}}\] 拿一个实际的例子,如果用阴天预测是否下雨 先验概率:下雨的概率 \[