TCP UDP发送缓冲

注意并不是send把s的发送缓冲中的数据传到连接的另一端的,而是协议传的,send仅仅是把buf中的数据copy到s的发送缓冲区的剩余空间里

TCP发给对方的数据,对方在收到数据时必须给矛确认,只有在收到对方的确认时,本方TCP才会把TCP发送缓冲区中的数据删除。

UDP因为是不可靠连接,不必保存应用进程的数据拷贝,应用进程中的数据在沿协议栈向下传递时,以某种形式拷贝到内核缓冲区,当数据链路层把数据传出后就把内核缓冲区中数据拷贝删除。因此它不需要一个发送缓冲区。

在阻塞模式下, send函数的过程是将应用程序请求发送的数据拷贝到发送缓存中发送并得到确认后再返回.但由于发送缓存的存在,表现为:如果发送缓存大小比请求发送的大小要大,那么send函数立即返回,同时向网络中发送数据;否则,send向网络发送缓存中不能容纳的那部分数据,并等待对端确认后再返回(接收端只要将数据收到接收缓存中,就会确认,并不一定要等待应用程序调用recv);

在非阻塞模式下,send函数的过程仅仅是将数据拷贝到协议栈的缓存区而已,如果缓存区可用空间不够,则尽能力的拷贝,返回成功拷贝的大小;如缓存区可用空间为0,则返回-1,同时设置errno为EAGAIN.

linux下可用sysctl -a | grep net.ipv4.tcp_wmem查看系统默认的发送缓存大小:
net.ipv4.tcp_wmem = 4096 16384 81920
这有三个值,第一个值是socket的发送缓存区分配的最少字节数,第二个值是默认值(该值会被net.core.wmem_default覆盖),缓存区在系统负载不重的情况下可以增长到这个值,第三个值是发送缓存区空间的最大字节数(该值会被net.core.wmem_max覆盖).
根据实际测试,如果手工更改了net.ipv4.tcp_wmem的值,则会按更改的值来运行,否则在默认情况下,协议栈通常是按net.core.wmem_default和net.core.wmem_max的值来分配内存的.

应用程序应该根据应用的特性在程序中更改发送缓存大小:

socklen_t sendbuflen = 0;
socklen_t len = sizeof(sendbuflen);
getsockopt(clientSocket, SOL_SOCKET, SO_SNDBUF, (void*)&sendbuflen, &len);
printf("default,sendbuf:%d\n", sendbuflen);

sendbuflen = 10240;
setsockopt(clientSocket, SOL_SOCKET, SO_SNDBUF, (void*)&sendbuflen, len);
getsockopt(clientSocket, SOL_SOCKET, SO_SNDBUF, (void*)&sendbuflen, &len);
printf("now,sendbuf:%d\n", sendbuflen);

需要注意的是,虽然将发送缓存设置成了10k,但实际上,协议栈会将其扩大1倍,设为20k.

  在Linux中使用非阻塞的socket的情形下。

(一)发送时

  当客户通过Socket提供的send函数发送大的数据包时,就可能返回一个EGGAIN的错误。该错误产生的原因是由于send 函数中的size变量大小超过了tcp_sendspace的值。tcp_sendspace定义了应用在调用send之前能够在kernel中缓存的数据量。当应用程序在socket中设置了O_NDELAY或者O_NONBLOCK属性后,如果发送缓存被占满,send就会返回EAGAIN的错误。

  为了消除该错误,有三种方法可以选择:   1.调大tcp_sendspace,使之大于send中的size参数   ---no -p -o tcp_sendspace=65536
  2.在调用send前,在setsockopt函数中为SNDBUF设置更大的值
  3.使用write替代send,因为write没有设置O_NDELAY或者O_NONBLOCK

(二)接收时

接收数据时常遇到Resource temporarily unavailable的提示,errno代码为11(EAGAIN)。这表明你在非阻塞模式下调用了阻塞操作,在该操作没有完成就返回这个错误,这个错误不会破坏socket的同步,不用管它,下次循环接着recv就可以。对非阻塞socket而言,EAGAIN不是一种错误。在VxWorks和Windows上,EAGAIN的名字叫做EWOULDBLOCK。其实这算不上错误,只是一种异常而已。

在Linux中使用非阻塞的socket的情形下。

(一)发送时

  当客户通过Socket提供的send函数发送大的数据包时,就可能返回一个EGGAIN的错误。该错误产生的原因是由于send 函数中的size变量大小超过了tcp_sendspace的值。tcp_sendspace定义了应用在调用send之前能够在kernel中缓存的数据量。当应用程序在socket中设置了O_NDELAY或者O_NONBLOCK属性后,如果发送缓存被占满,send就会返回EAGAIN的错误。

  为了消除该错误,有三种方法可以选择:   1.调大tcp_sendspace,使之大于send中的size参数   ---no -p -o tcp_sendspace=65536
  2.在调用send前,在setsockopt函数中为SNDBUF设置更大的值
  3.使用write替代send,因为write没有设置O_NDELAY或者O_NONBLOCK

(二)接收时

接收数据时常遇到Resource temporarily unavailable的提示,errno代码为11(EAGAIN)。这表明你在非阻塞模式下调用了阻塞操作,在该操作没有完成就返回这个错误,这个错误不会破坏socket的同步,不用管它,下次循环接着recv就可以。对非阻塞socket而言,EAGAIN不是一种错误。在VxWorks和Windows上,EAGAIN的名字叫做EWOULDBLOCK。其实这算不上错误,只是一种异常而已。

  另外,如果出现EINTR即errno为4,错误描述Interrupted system call,操作也应该继续。

  最后,如果recv的返回值为0,那表明对方已将连接断开,我们的接收操作也应该结束。

TCP UDP发送缓冲

时间: 2024-10-08 20:57:00

TCP UDP发送缓冲的相关文章

TCP和UDP发送数据包的大小问题

用UDP协议发送时,用sendto函数最大能发送数据的长度为:65535-20-8=65507字节,其中20字节为IP包头长度,8字节为UDP包头长度.用sendto函数发送数据时,如果指的的数据长度大于该值,则函数会返回错误. 用TCP协议发送时,由于TCP是数据流协议,因此不存在包大小的限制(暂不考虑缓冲区的大小),这是指在 用send函数时,数据长度参数不受限制.而实际上,所指定的这段数据并不一定会一次性发送出去,如果这段数据比较长,可能会被分段发送,如果比较短,可能会等待和下一次数据一起

TCP/UDP网络编程的基础知识与基本示例(windows和Linux)

一.TCP编程的一般步骤 服务器端: 1.创建一个socket,用函数socket() 2.绑定IP地址.端口等信息到socket上,用函数bind() 3.开启监听,用函数listen() 4.接收客户端上来的连接,用函数accept() 5.收发数据,用函数send()和recv(),或者read()和write() 6.关闭网络连接 7.关闭监听 客户端: 1.创建一个socket,用函数socket() 2.设置要连接的对方IP地址和端口等属性 3.连接服务器,用函数connect()

TCP/UDP常见问题小结

1,udp丢包 困扰几天的udp内网传输部分终于做通了,解决的关键就在于setsockopt的调用,设置接收缓冲. 遇到的问题是这样的,主机端发送udp数据包: 应用层的包大小为1452byte大小,这样拆包是根据以太网的MTU为1500字节而考虑的(当然外网状态下并不一定就是以太网网络,路由MTU可能更加小),因为在网络层和传输层还有8byte的udp包头和20byte的ip包头,所以以太网帧大小为1452+8+20 = 1480byte. 主机端(linux)现在接了11路视频数据,发送的数

TCP/UDP详解

转载:http://www.cnblogs.com/visily/archive/2013/03/15/2961190.html, 作者:望梅止渴 相关: HTTP协议详解  深入理解HTTP协议 1.传输层存在的必要性 由于网络层的分组传输是不可靠的,无法了解数据到达终点的时间,无法了解数据未达终点的状态.因此有必要增强网络层提供服务的服务质量. 2.引入传输层的原因 面向连接的传输服务与面向连接的网络服务类似,都分为建立连接.数据传输.释放连接三个阶段:编址.寻址.流控制也是类似的.无连接的

三、初识TCP/UDP(传输层)

一.初识TCP/UDP(传输层) 引言:TCP(Transmission Control Protocol),又叫传输控制协议,UDP(User Datagram Protocol),又叫用户数据报协议.两者都是是传输层协议,但他们的通信机制与应用场景不同. 1.TCP与UDP区别 特点 TCP UDP 传输方式 字节流 数据报 连接性 面向连接 面向非连接 可靠性 可靠 不可靠 传输效率 慢 快 面向字节流(TCP) 面向字节流的话,虽然应用程序和TCP的交互是一次一个数据块(大小不等),TC

TCP,UDP,HTTP,IP,SOCKET

近日对各网络协议进行了一番学习,宏观认识上有收获. 网络由下往上分为物理层.数据链路层.网络层.传输层.会话层.表示层和应用层.(引用)IP 协议对应于网络层,TCP/UDP协议对应于传输层, HTTP协议对应于应用层, SOCKET则是对TCP/IP协议的封装和应用. TCP连接的三次握手:第一次握手:客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认: 第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn

涨知识-VI 基于TCP/UDP的应用层协议

基于TCP/UDP的应用层协议: 基于TCP: Telnet(Teletype over the Network, 网络电传),通过一个终端(terminal)登陆到网络 FTP(File Transfer Protocol 文件传输协议) SMTP(Simple Mail Transfer Protocol 简单邮件传输协议),用来发送电子邮件 POP3(Post Office Protocol 3)邮件读取协议,协议通常被用来接受电子邮件 HTTP HTTPS 基于UDP: NFS(net

Java TCP/UDP socket 编程流程总结

最近正好学习了一点用java socket编程的东西.感觉整体的流程虽然不是很繁琐,但是也值得好好总结一下. Socket Socket可以说是一种针对网络的抽象,应用通过它可以来针对网络读写数据.就像通过一个文件的file handler就可以都写数据到存储设备上一样.根据TCP协议和UDP协议的不同,在网络编程方面就有面向两个协议的不同socket,一个是面向字节流的一个是面向报文的. 对socket的本身组成倒是比较好理解.既然是应用通过socket通信,肯定就有一个服务器端和一个客户端.

TCP/UDP协议

TCP/UDP协议 1.协议简介 TCP (Transmission Control Protocol)和UDP(User Datagram Protocol)协议属于传输层协议.其中TCP提供IP环境下的数据可靠传输,它提供的服务包括数据流传送.可靠性.有效流控.全双工操作和多路复用.通过面向连接.端到端和可靠的数据包发送.通俗说,它是事先为所发送的数据开辟出连接好的通道,然后再进行数据发送:而UDP则不为IP提供可靠性.流控或差错恢复功能.一般来说,TCP对应的是可靠性要求高的应用,而UDP