Machine Learning - week 2 - Multivariate Linear Regression

Gradient Descent in Practice - Feature Scaling

Make sure features are on a similar scale.

Features 的范围越小,总的可能性就越小,计算速度就能加快。

Dividing by the range

通过 feature/range 使每个 feature 大概在 [-1, 1] 的范围内

下题是一个例子:

Mean normalization

将值变为接近 0。除了 x0,因为 x的值为 1。

mu1 是 average value of x1 in trainning sets;

S是 x1 的范围大小,比如卧室是 [0, 5],那么范围为 5 - 0 = 5。

确保 gradient descent 工作正确

如上图,这个图像是正确的,随着循环次数的增加,J(θ) 主键减小。超过一定循环次数之后,J(θ) 曲线趋于平缓。可以根据图像得出什么时候停止,或者当每次循环,J(θ) 的变化小于 ε 时停止。

图像上升

说明 α 取值大了,应该减小。真实的图像可能如下:

如果 α 足够小,那么能缓慢但完全覆盖。

如果 α 太大:在每次循环时,可能不会减少从而不能完全覆盖。

Features and polynomial regression

可以使用自定义的 features 而不是完全照搬已存在的 features。比如房子有长宽两个属性,我们可以创建一个新属性--面积。然后,表达式变成

,但是这个曲线是先减小后增大的,与实际数据不符(面积越大,总价越高)。所以调整为

Normal equation

Gradient Descent 随着循环次数增加,逐步逼近最小值。如图:

Normal equation 是通过方法直接计算出 θ。

导数为 0 时最小

然后解出 θ0 到 θn

求解 θ 的方程

Matrix 概念见 Machine Learning - week 1

什么时候用 Gradient Descent 或者 Normal Equation

当 n 较大时,右边的会很慢,因为计算  是 O(n3)

当 n 小的时候,右边会更快,因为它是直接得出结果,不需要 iterations 或者 feature scaling。

如果  是 non-invertible?

1. Redundant features (are not linearly independent).

E.g. x1 = size in feet2; x2 = size in m2

2. Too many features(e.g. m <= n)

比如 m = 10, n = 100,意思是你只有 10 个数据,但有 100 个 features,显然,数据不足以覆盖所有的 features。

可以删除一些 features(只保留与数据相关的 features)或者使用 regularization。

习题

1. 

不知道如何同时使用两种方法,这两种方法是否是顺序相关的?

使用 Dividing by the range

range = max - min = 8836 - 4761 = 4075

vector / range 后变为

1.9438
1.2721
2.1683
1.1683

对上述使用 mean normalization

avg = 1.6382

range =  2.1683 - 1.1683 = 1

x2(4) = (1.1683 - 1.6382) / 1 = -0.46990 保留两位小数为 -0.47

5. 

上面提到了“Features 的范围越小,总的可能性就越小,计算速度就能加快。”(多选题也可以单选)

时间: 2024-12-06 15:20:46

Machine Learning - week 2 - Multivariate Linear Regression的相关文章

machine learning(13) --Regularization:Regularized linear regression

machine learning(13) --Regularization:Regularized linear regression Gradient descent without regularization                    with regularization                     θ0与原来是的没有regularization的一样 θ1-n和原来相比会稍微变小(1-αλ⁄m)<1 Normal equation without regular

Note for video Machine Learning and Data Mining——Linear Model

Here is the note for lecture three. the linear model Linear model is a basic and important model in machine learning. 1. input representation The data we get usually needs some changes, most of them is the input data. In linear model, input =(x1,x2,x

Andrew Ng Machine Learning - Week 3:Logistic Regression &amp; Regularization

此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记.力求简洁,仅代表本人观点,不足之处希望大家探讨. 课程网址:https://www.coursera.org/learn/machine-learning/home/welcome Week 1: Introduction 笔记:http://blog.csdn.net/ironyoung/article/details/46845233 We

转载 Deep learning:三(Multivariance Linear Regression练习)

前言: 本文主要是来练习多变量线性回归问题(其实本文也就3个变量),参考资料见网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex3/ex3.html.其实在上一篇博文Deep learning:二(linear regression练习)中已经简单介绍过一元线性回归问题的求解,但是那个时候用梯度下降法求解时,给出的学习率是固定的0.7.而本次实验

02 Multivariate Linear Regression

h(x) \[ \begin{align*}h_\theta(x) =\begin{bmatrix}\theta_0 \hspace{2em} \theta_1 \hspace{2em} ... \hspace{2em} \theta_n\end{bmatrix}\begin{bmatrix}x_0 \newline x_1 \newline \vdots \newline x_n\end{bmatrix}= \theta^T x\end{align*}, x_0^{(i)} = 1 \] Gr

Andrew Ng Machine Learning 专题【Linear Regression】

此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探讨. 课程网址:https://www.coursera.org/learn/machine-learning/home/welcome Week 3: Logistic Regression & Regularization 笔记:http://blog.csdn.net/ironyoung/ar

CheeseZH: Stanford University: Machine Learning Ex1:Linear Regression

(1) How to comput the Cost function in Univirate/Multivariate Linear Regression; (2) How to comput the Batch Gradient Descent function in Univirate/Multivariate Linear Regression; (3) How to scale features by mean value and standard deviation; (4) Ho

Machine Learning - IV. Linear Regression with Multiple Variables (Week 2)

http://blog.csdn.net/pipisorry/article/details/43529845 机器学习Machine Learning - Andrew NG courses学习笔记 multivariate linear regression多变量线性规划 (linear regression works with multiple variables or with multiple features) Multiple Features(variables)多特征(变量)

机器学习---线性回归(Machine Learning Linear Regression)

线性回归是机器学习中最基础的模型,掌握了线性回归模型,有利于以后更容易地理解其它复杂的模型. 线性回归看似简单,但是其中包含了线性代数,微积分,概率等诸多方面的知识.让我们先从最简单的形式开始. 一元线性回归(Simple Linear Regression): 假设只有一个自变量x(independent variable,也可称为输入input, 特征feature),其与因变量y(dependent variable,也可称为响应response, 目标target)之间呈线性关系,当然x