(hdu 6030) Happy Necklace 找规律+矩阵快速幂

题目链接 :http://acm.hdu.edu.cn/showproblem.php?pid=6030

Problem Description
Little Q wants to buy a necklace for his girlfriend. Necklaces are single strings composed of multiple red and blue beads.
Little Q desperately wants to impress his girlfriend, he knows that she will like the necklace only if for every prime length continuous subsequence in the necklace, the number of red beads is not less than the number of blue beads.
Now Little Q wants to buy a necklace with exactly n beads. He wants to know the number of different necklaces that can make his girlfriend happy. Please write a program to help Little Q. Since the answer may be very large, please print the answer modulo 109+7.
Note: The necklace is a single string, {not a circle}.

Input
The first line of the input contains an integer T(1≤T≤10000), denoting the number of test cases.
For each test case, there is a single line containing an integer n(2≤n≤1018), denoting the number of beads on the necklace.

Output
For each test case, print a single line containing a single integer, denoting the answer modulo 109+7.

Sample Input

2
2
3

Sample Output

3
4

Source
2017中国大学生程序设计竞赛 - 女生专场

题目大意:有n个珠子,有红蓝两种珠子 符合下列两个条件的珠子排列方法有多少种?

*******在每串手链种,长度为素数的子串种,红色珠子要不小于蓝色珠子

分析:找到规律:f[i] = f[i-1]+f[i-3];因为n很大   可以用矩阵快速幂写

初始矩阵为2  3  4  转移矩阵为0  0  1

1   0  0

0   1  1

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<math.h>
#include<queue>
#include<stack>
#include <vector>
#include<iostream>
using namespace std;
#define N 50005
#define INF 0x3f3f3f3f
#define LL long long
#define mod 1000000007
struct node
{
    LL a[10][10];
};
node mul(node a,node b)
{
    node te;
    memset(te.a,0,sizeof(te.a));
    for(int i=0;i<3;i++)
    {
        for(int j=0;j<3;j++)
        {
            for(int k=0;k<3;k++)
            {
                te.a[i][j]+=(a.a[i][k]*b.a[k][j])%mod;
            }
        }
    }
    return te;
}
LL quick(LL n)
{
    if(n<4)
    {
        int num[]={0,2,3,4};
        return num[n];
    }
    node b,team;
    b.a[0][0] = 0;b.a[0][1] = 0;b.a[0][2] = 1;
    b.a[1][0] = 1;b.a[1][1] = b.a[1][2] = 0;
    b.a[2][0] = 0;b.a[2][1] = b.a[2][2] = 1;
    memset(team.a,0,sizeof(team.a));
    for(int i=0;i<3;i++)
        team.a[i][i] = 1;
    LL k = n-3;
    while(k)
    {
        if(k&1)
        team = mul(team,b);
        b = mul(b,b);
        k = k/2;
    }
    return (team.a[0][2]*2+team.a[1][2]*3+team.a[2][2]*4)%mod;
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        LL n;
        scanf("%lld",&n);
        printf("%lld\n",quick(n));
    }
    return 0;}
时间: 2024-10-06 17:03:35

(hdu 6030) Happy Necklace 找规律+矩阵快速幂的相关文章

HDU 4990 Reading comprehension (找规律+矩阵快速幂)

题目链接:HDU 4990 Reading comprehension 题目给的一个程序其实就是一个公式:当N=1时 f[n]=1,当n>1时,n为奇数f[n]=2*f[n-1]+1,n为偶数f[n]=2*f[n-1]. 先不取模,计算前十个找规律.得到一个递推公式:f[n]=2*f[n-2]+f[n-1]+1 然后快速幂解决之. 给出一个神奇的网站(找数列通项):http://oeis.org/ AC代码: #include<stdio.h> #include<string.h&

HDU 4990 Reading comprehension(找规律+矩阵快速幂)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4990 Problem Description Read the program below carefully then answer the question. #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include<iostream> #include

HDU 5171 GTY&#39;s birthday gift 矩阵快速幂

点击打开链接 GTY's birthday gift Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 225    Accepted Submission(s): 78 Problem Description FFZ's birthday is coming. GTY wants to give a gift to ZZF. He as

HDU 4965 Fast Matrix Calculation(矩阵快速幂)

HDU 4965 Fast Matrix Calculation 题目链接 矩阵相乘为AxBxAxB...乘nn次,可以变成Ax(BxAxBxA...)xB,中间乘n n - 1次,这样中间的矩阵一个只有6x6,就可以用矩阵快速幂搞了 代码: #include <cstdio> #include <cstring> const int N = 1005; const int M = 10; int n, m; int A[N][M], B[M][N], C[M][M], CC[N]

HDU 2256 Problem of Precision (矩阵快速幂)

HDU 2256 Problem of Precision (矩阵快速幂) ACM 题目地址:HDU 2256 Problem of Precision 题意: 给出一个式子,求值. 分析: 推起来最后那步会比较难想. 具体过程见: 表示共轭只听说过复数的和图的... 这构题痕迹好明显... 跟基友开玩笑说:如果遇到这种题,推到Xn+Yn*sqrt(6)这步时,打表最多只能打到10就爆int了,这是输出正解和Xn,说不定眼神好能发现ans = Xn * 2 - 1呢.= =... 代码: /*

hdu 4965 Fast Matrix Calculation(矩阵快速幂)2014多校训练第9场

Fast Matrix Calculation                                                                   Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Problem Description One day, Alice and Bob felt bored again, Bob knows Ali

hdu 1757 A Simple Math Problem 矩阵快速幂

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 Lele now is thinking about a simple function f(x).If x < 10 f(x) = x.If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);And ai(0<=i<=9) can only be 0 or 1 .Now, I w

HDU 2256 Problem of Precision(矩阵快速幂)+ HDU 4565

HDU 2256 题意: 计算?(2√+3√)2n?mod1024 思路: ∵f(n)=(2√+3√)2n=(5+26√)n=An+Bn?6√ ∴f(n?1)=An?1+Bn?1?6√ 又∵f(n)=(5+26√)?f(n?1) ∴f(n)=(5?An?1+12?Bn?1)+(2?An?1+5?Bn?1)?6√ 所以递推矩阵就是: (52125)?(An?1Bn?1)=(AnBn) A1=5,B1=2. 然后套矩阵快速幂模板即可求出An,Bn. 又∵(5+26√)n=An+Bn?6√ ∴(5?2

hdu 4565 So Easy! (共轭构造+矩阵快速幂)

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4565 题目大意: 给出a,b,n,m,求出的值, 解题思路: 因为题目中出现了开根号,和向上取整后求余,所以用矩阵快速幂加速求解过程的时候,会产生误差,就很自然地想到了凑数,因为(a-1)^2<b<a^2,得出0<a-sqrt(b)<1,则无论n取多大,(a-sqrt(b))^n都是小于1的,(a-sqrt(b))^n 与 (a+sqrt(b))^n共轭,两者展开后会相互抵销,所以(