【转】Struts2的线程安全 和Struts2中的设计模式----ThreadLocal模式

【转】Struts2的线程安全 和Struts2中的设计模式----ThreadLocal模式

博客分类:

Struts2的线程安全ThreadLocal模式Struts2调用流程

转载自  http://downpour.iteye.com/blog/1335991

Struts2中的设计模式

设计模式(Design pattern)是经过程序员反复实践后形成的一套代码设计经验的总结。设计模式随着编程语言的发展,也由最初的“编程惯例”逐步发展成为被反复使用、并为绝大多数程序员所知晓的、完善的理论体系。我们使用设计模式(Design pattern)的初衷,是使代码的重用度提高、让代码能够更容易被别人理解以及保证代码的可靠性。毫无疑问,在程序中使用设计模式无论是对于程序员自身还是对于应用程序都是双赢的结果。正确地使用设计模式,能够使我们编程真正实现工程化和规范化,并且在一定程度上指导着框架的设计和实现。

在深入探讨Struts2所依赖的核心技术之前,我们将首先带领读者领略一下在整个Struts2框架之中所使用到的一些最常用的设计模式。理解这些设计模式的运用场景和内部机理,也将为日后我们对这些核心技术的分析打下坚实的基础。

4.1 ThreadLocal模式

ThreadLocal模式,严格意义上来说并不能称之为一种设计模式,因为它只是一个用来解决多线程程序中数据共享问题的一个解决方案。尽管如此,ThreadLocal模式却贯穿了整个Struts2和XWork框架,成为Struts2框架进行“解耦”设计的核心依赖技术。那么,为什么要在Struts2中引入ThreadLocal模式呢?这不得不从Web开发中的线程安全问题谈起。

4.1.1线程安全问题的由来

在传统的Web开发中,我们处理Http请求最常用的方式是通过实现Servlet对象来进行Http请求的响应。Servlet是J2EE的重要标准之一,规定了Java如何响应Http请求的规范。通过HttpServletRequest和HttpServletResponse对象,我们能够轻松地与Web容器交互。

当Web容器收到一个Http请求时,Web容器中的一个主调度线程会从事先定义好的线程池中分配一个当前工作线程,将请求分配给当前的工作线程,由该线程来执行对应的Servlet对象中的service方法。如果这个工作线程正在执行的时候,Web容器收到另外一个请求,主调度线程会同样从线程池中选择另一个工作线程来服务新的请求。Web容器本身并不关心这个新的请求是否访问的是同一个Servlet实例。因此,我们可以得出一个结论:对于同一个Servlet对象的多个请求,Servlet的service方法将在一个多线程的环境中并发执行。

所以,Web容器默认采用单实例(单Servlet实例)多线程的方式来处理Http请求。这种处理方式能够减少新建Servlet实例的开销,从而缩短了对Http请求的响应时间。但是,这样的处理方式会导致变量访问的线程安全问题。也就是说,Servlet对象并不是一个线程安全的对象。下面的测试代码将证实这一点:

Java代码  

Java代码  

  1. <span style="font-size: medium;">public class ThreadSafeTestServlet extends HttpServlet  {
  2. // 定义一个实例变量,并非一个线程安全的变量
  3. private int counter = 0;
  4. public void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
  5. doPost(req, resp);
  6. }
  7. public void doPost(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
  8. // 输出当前Servlet的信息以及当前线程的信息
  9. System.out.println(this + ":" + Thread.currentThread());
  10. // 循环,并增加实例变量counter的值
  11. for (int i = 0; i < 5; i++) {
  12. System.out.println("Counter = " + counter);
  13. try {
  14. Thread.sleep((long) Math.random() * 1000);
  15. counter++;
  16. } catch (InterruptedException exc) {
  17. }
  18. }
  19. }
  20. }
  21. </span>

这里参阅了网络上一段著名的对Servlet线程安全性进行测试的代码(http://zwchen.iteye.com/blog/91088)。运行之后,我们可以看一下这个例子的输出:

Java代码  

Java代码  

  1. <span style="font-size: medium;">sample.SimpleServlet@11e1bbf:Thread[http-8081-Processor23,5,main]
  2. Counter = 60
  3. Counter = 61
  4. Counter = 62
  5. Counter = 65
  6. Counter = 68
  7. Counter = 71
  8. Counter = 74
  9. Counter = 77
  10. Counter = 80
  11. Counter = 83
  12. sample.SimpleServlet@11e1bbf:Thread[http-8081-Processor22,5,main]
  13. Counter = 61
  14. Counter = 63
  15. Counter = 66
  16. Counter = 69
  17. Counter = 72
  18. Counter = 75
  19. Counter = 78
  20. Counter = 81
  21. Counter = 84
  22. Counter = 87
  23. sample.SimpleServlet@11e1bbf:Thread[http-8081-Processor24,5,main]
  24. Counter = 61
  25. Counter = 64
  26. Counter = 67
  27. Counter = 70
  28. Counter = 73
  29. Counter = 76
  30. Counter = 79
  31. Counter = 82
  32. Counter = 85
  33. Counter = 88
  34. </span>

通过上面的输出,我们可以得出以下三个Servlet对象的运行特性:

1. Servlet对象是一个无状态的单例对象(Singleton),因为我们看到多次请求的this指针所打印出来的hashcode值都相同

2. Servlet在不同的线程(线程池)中运行,如http-8081-Processor22和http-8081-Processor23等输出值可以明显区分出不同的线程执行了同一段Servlet逻辑代码。

3. Counter变量在不同的线程中共享,而且它的值被不同的线程修改,输出时已经不是顺序输出。也就是说,其他的线程会篡改当前线程中实例变量的值,针对这些对象的访问不是线程安全的。

【有关线程安全的概念范畴】

谈到线程安全,对于许多初学者来说很容易引起概念上的混淆。线程安全,指的是在多线程环境下,一个类在执行某个方法时,对类的内部实例变量的访问安全与否。因此,对于下面列出来的2类变量,不存在任何线程安全的说法: 1)方法签名中的任何参数变量。 
2)处于方法内部的局部变量。

任何针对上述形式的变量的访问都是线程安全的,因为它们都处于方法体的内部,由当前的执行线程独自管理。 
     这就是线程安全问题的由来:在传统的基于Servlet的开发模式中,Servlet对象内部的实例变量不是线程安全的。在多线程环境中,这些变量的访问需要通过特殊的手段进行访问控制。

解决线程安全访问的方法很多,比较容易想到的一种方案是使用同步机制,但是出于对Web应用效率的考虑,这种机制在Web开发中的可行性很低,也违背了Servlet的设计初衷。因此,我们需要另辟蹊径来解决这一困扰我们的问题。

4.1.2 ThreadLocal模式的实现机理

在JDK的早期版本中,提供了一种解决多线程并发问题的方案: java.lang.ThreadLocal类。ThreadLocal类在维护变量时,实际使用了当前线程(Thread)中的一个叫做ThreadLocalMap的独立副本,每个线程可以独立修改属于自己的副本而不会互相影响,从而隔离了线程和线程,避免了线程访问实例变量发生冲突的问题。

ThreadLocal本身并不是一个线程,而是通过操作当前线程(Thread)中的一个内部变量来达到与其他线程隔离的目的。之所以取名为ThreadLocal,所期望表达的含义是其操作的对象是线程(Thread)的一个本地变量。如果我们看一下Thread的源码实现,就会发现这一变量,如代码清单4-2所示:

Java代码  

Java代码  

  1. <span style="font-size: medium;">public class Thread implements Runnable {
  2. // 这里省略了许多其他的代码
  3. ThreadLocal.ThreadLocalMap threadLocals = null;
  4. }</span>

这是JDK中Thread源码的一部分,从中我们可以看出ThreadLocalMap跟随着当前的线程而存在。不同的线程Thread,拥有不同的ThreadLocalMap的本地实例变量,这也就是“副本”的含义。接下来我们再来看看ThreadLocal.ThreadLocalMap是如何定义的,以及ThreadLocal如何来操作它,如代码清单4-3所示:

Java代码  

Java代码  

  1. <span style="font-size: medium;">public class ThreadLocal<T> {
  2. // 这里省略了许多其他代码
  3. // 将value的值保存于当前线程的本地变量中
  4. public void set(T value) {
  5. // 获取当前线程
  6. Thread t = Thread.currentThread();
  7. // 调用getMap方法获得当前线程中的本地变量ThreadLocalMap
  8. ThreadLocalMap map = getMap(t);
  9. // 如果ThreadLocalMap已存在,直接使用
  10. if (map != null)
  11. // 以当前的ThreadLocal的实例作为key,存储于当前线程的
  12. // ThreadLocalMap中,如果当前线程中被定义了多个不同的ThreadLocal
  13. // 的实例,则它们会作为不同key进行存储而不会互相干扰
  14. map.set(this, value);
  15. else
  16. // ThreadLocalMap不存在,则为当前线程创建一个新的
  17. createMap(t, value);
  18. }
  19. // 获取当前线程中以当前ThreadLocal实例为key的变量值
  20. public T get() {
  21. // 获取当前线程
  22. Thread t = Thread.currentThread();
  23. // 获取当前线程中的ThreadLocalMap
  24. ThreadLocalMap map = getMap(t);
  25. if (map != null) {
  26. // 获取当前线程中以当前ThreadLocal实例为key的变量值
  27. ThreadLocalMap.Entry e = map.getEntry(this);
  28. if (e != null)
  29. return (T)e.value;
  30. }
  31. // 当map不存在时,设置初始值
  32. return setInitialValue();
  33. }
  34. // 从当前线程中获取与之对应的ThreadLocalMap
  35. ThreadLocalMap getMap(Thread t) {
  36. return t.threadLocals;
  37. }
  38. // 创建当前线程中的ThreadLocalMap
  39. void createMap(Thread t, T firstValue) {
  40. // 调用构造函数生成当前线程中的ThreadLocalMap
  41. t.threadLocals = new ThreadLocalMap(this, firstValue);
  42. }
  43. // ThreadLoaclMap的定义
  44. static class ThreadLocalMap {
  45. // 这里省略了许多代码
  46. }
  47. }
  48. </span>

从上述代码中,我们看到了ThreadLocal类的大致结构和进行ThreadLocalMap的操作。我们可以从中得出以下的结论:

1. ThreadLocalMap变量属于线程(Thread)的内部属性,不同的线程(Thread)拥有完全不同的ThreadLocalMap变量。

2. 线程(Thread)中的ThreadLocalMap变量的值是在ThreadLocal对象进行set或者get操作时创建的。

3. 在创建ThreadLocalMap之前,会首先检查当前线程(Thread)中的ThreadLocalMap变量是否已经存在,如果不存在则创建一个;如果已经存在,则使用当前线程(Thread)已创建的ThreadLocalMap。

4. 使用当前线程(Thread)的ThreadLocalMap的关键在于使用当前的ThreadLocal的实例作为key进行存储。

ThreadLocal模式,至少从两个方面完成了数据访问隔离,有了横向和纵向的两种不同的隔离方式,ThreadLocal模式就能真正地做到线程安全:

纵向隔离 —— 线程(Thread)与线程(Thread)之间的数据访问隔离。这一点由线程(Thread)的数据结构保证。因为每个线程(Thread)在进行对象访问时,访问的都是各自线程自己的ThreadLocalMap。

横向隔离 —— 同一个线程中,不同的ThreadLocal实例操作的对象之间的相互隔离。这一点由ThreadLocalMap在存储时,采用当前ThreadLocal的实例作为key来保证。

深入比较TheadLocal模式与synchronized关键字

  ThreadLocal模式synchronized关键字都用于处理多线程并发访问变量的问题,只是二者处理问题的角度和思路不同。

  1)ThreadLocal是一个java类,通过对当前线程中的局部变量的操作来解决不同线程的变量访问的冲突问题。所以,ThreadLocal提供了线程安全的共享对象机制,每个线程都拥有其副本。

  2)Java中的synchronized是一个保留字,它依靠JVM的锁机制来实现临界区的函数或者变量的访问中的原子性。在同步机制中,通过对象的锁机制保证同一时间只有一个线程访问变量。此时,被用作“锁机制”的变量时多个线程共享的。

  同步机制(synchronized关键字)采用了“以时间换空间”的方式,提供一份变量,让不同的线程排队访问。而ThreadLocal采用了“以空间换时间”的方式,为每一个线程都提供一份变量的副本,从而实现同时访问而互不影响。

ThreadLocal模式并不是什么高深的学问,它甚至从JDK1.2开始就存在于Java世界中。由此可见,我们掌握一种知识的最终目的是熟练而合理地运用它。

4.1.3 ThreadLocal模式的应用场景

在分析了ThreadLocal的源码之后,我们来看看ThreadLocal模式最合适的业务场景。在一个完整的“请求-响应”过程中,主线程的执行过程总是贯穿始终。当这个主线程的执行过程中被加入了ThreadLocal的读写时,会对整个过程产生怎样的影响呢?我们根据之前源码分析的结果,并结合分层开发模式,把整个流程画下来,如图4-1所示:

从上面图中我们可以看到,由于ThreadLocal所操作的是维持于整个Thread生命周期的副本(ThreadLocalMap),所以无论在J2EE程序程序的哪个层次(表示层、业务逻辑层或者持久层),只要在一个Thread的生命周期之内,存储于ThreadLocalMap中的对象都是线程安全的(因为ThreadLocalMap本身仅仅隶属于当前的执行线程,是执行线程内部的一个属性变量。我们用图中的阴影部分来表示这个变量的存储空间)。而这一点,正是被我们用于来解决多线程环境中的变量共享问题的核心技术。ThreadLocal的这一特性也使其能够被广泛地应用于J2EE开发中的许多业务场景。

【数据共享 OR 数据传递?】

ThreadLocal模式由于利用了Java自身的语法特性而显得异常简单和便利,因而被广泛应用于J2EE开发,尤其是应对跨层次的资源共享,例如在Spring中,就有使用ThreadLocal模式来管理数据库连接或者Hibernate的Session的范例。 
在一些比较著名的论坛中,有着很多关于使用ThreadLocal模式来做数据传递的讨论。事实上,这是对ThreadLocal模式的一个极大的误解。读者需要注意的是,ThreadLocal模式解决的是同一线程中隶属于不同开发层次的数据共享问题,而不是在不同的开发层次中进行数据传递。

1)ThreadLocal模式的核心在于实现一个共享环境(类的内部封装了ThreadLocal的静态实例)。所以,在操作ThreadLocal时,这一共享环境会跨越多个开发层次而随处存在。

2)随处存在的共享环境造成了所有的开发层次的共同依赖,从而使得所有的开发层次都耦合在了一起,从而变得无法独立测试。

3)数据传递应该通过接口函数的签名显式声明,这样才能够从接口声明中表达接口所表达的真正含义。ThreadLocal模式位于实现的内部,从而使得接口与接口之间无法达成一致的声明契约。

Struts2的解耦合的设计理念使得Struts2的MVC实现成为了使用ThreadLocal模式的天然场所。在第三章中,我们已经介绍了一些基本概念,Struts2通过引入XWork框架,将整个Http请求的过程拆分成为与Web容器有关和与Web容器无关的两个执行阶段。而这两个阶段的数据交互就是通过ThreadLocal模式中的线程共享副本安全地进行。在其中,我们没有看到数据传递,存在的只是整个执行线程的数据共享。

4.1.4 ThreadLocal模式的核心元素

仔细分析上一节的示意图(图4-1),我们可以发现,要完成ThreadLocal模式,其中最关键的地方就是创建一个任何地方都可以访问到的ThreadLocal实例(也就是执行示意图中的菱形部分)。而这一点,我们可以通过类的静态实例变量来实现,这个用于承载静态实例变量的类就被视作是一个共享环境。我们来看一个例子,如代码清单4-4所示:

Java代码  

Java代码  

  1. <span style="font-size: medium;">public class Counter {
  2. // 新建一个静态的ThreadLocal变量,并通过get方法将其变为一个可访问的对象
  3. private static ThreadLocal<Integer> counterContext = new ThreadLocal<Integer>() {
  4. protected synchronized Integer initialValue() {
  5. return 10;
  6. }
  7. };
  8. // 通过静态的get方法访问ThreadLocal中存储的值
  9. public static Integer get() {
  10. return counterContext.get();
  11. }
  12. // 通过静态的set方法将变量值设置到ThreadLocal中
  13. public static void set(Integer value) {
  14. counterContext.set(value);
  15. }
  16. // 封装业务逻辑,操作存储于ThreadLocal中的变量
  17. public static Integer getNextCounter() {
  18. counterContext.set(counterContext.get() + 1);
  19. return counterContext.get();
  20. }
  21. }</span>

在这个Counter类中,我们实现了一个静态的ThreadLocal变量,并通过get方法将ThreadLocal中存储的值暴露出来。我们还封装了一个带有业务逻辑的方法getNextCounter,操作ThreadLocal中的值,将其加1,并返回计算后的值。

此时,Counter类就变成了一个数据共享环境,我们也拥有了实现ThreadLocal模式的关键要素。有了它,我们来编写一个简单的测试,如代码清单4-5所示:

Java代码  

Java代码  

  1. <span style="font-size: medium;">public class ThreadLocalTest extends Thread {
  2. public void run() {
  3. for(int i = 0; i < 3; i++){
  4. System.out.println("Thread[" + Thread.currentThread().getName() + "],counter=" + Counter.getNextCounter());
  5. }
  6. }
  7. }
  8. </span>

这是一个简单的线程类,循环输出当前线程的名称和getNextCounter的结果,由于getNextCounter中的逻辑所操作的是ThreadLocal中的变量,所以无论同时有多少个线程在运行,返回的值将仅与当前线程的变量值有关,也就是说,在同一个线程中,变量值会被连续累加。这一点可以通过如下的测试代码证实:

Java代码  

Java代码  

  1. <span style="font-size: medium;">public class Test {
  2. public static void main(String[] args) throws Exception {
  3. ThreadLocalTest testThread1 = new ThreadLocalTest();
  4. ThreadLocalTest testThread2 = new ThreadLocalTest();
  5. ThreadLocalTest testThread3 = new ThreadLocalTest();
  6. testThread1.start();
  7. testThread2.start();
  8. testThread3.start();
  9. }
  10. }
  11. </span>

我们来运行一下上面的代码,并看看输出结果:

Java代码  

Java代码  

  1. <span style="font-size: medium;">Thread[Thread-2],counter=11
  2. Thread[Thread-2],counter=12
  3. Thread[Thread-2],counter=13
  4. Thread[Thread-0],counter=11
  5. Thread[Thread-0],counter=12
  6. Thread[Thread-0],counter=13
  7. Thread[Thread-1],counter=11
  8. Thread[Thread-1],counter=12
  9. Thread[Thread-1],counter=13
  10. </span>

上面的输出结果也证实了,counter的值在多线程环境中的访问是线程安全的。从对例子的分析中我们可以再次体会到,ThreadLocal模式最合适的使用场景:在同一个线程(Thread)的不同开发层次中共享数据。

从上面的例子中,我们可以简单总结出实现ThreadLocal模式的两个主要步骤:

1. 建立一个类,并在其中封装一个静态的ThreadLocal变量,使其成为一个共享数据环境。

2. 在类中实现访问静态ThreadLocal变量的静态方法(设值和取值)。

建立在ThreadLocal模式的实现步骤之上,ThreadLocal的使用则更加简单。在线程执行的任何地方,我们都可以通过访问共享数据类中所提供的ThreadLocal变量的设值和取值方法安全地获得当前线程中安全的变量值。

这两个步骤,我们之后会在Struts2的实现中多次提及,读者只要能充分理解ThreadLocal处理多线程访问的基本原理,就能对Struts2的数据访问和数据共享的设计有一个整体的认识。

讲到这里,我们回过头来看看ThreadLocal模式的引入,到底对我们的编程模型有什么重要的意义呢?

downpour 写道

结论 使用ThreadLocal模式,可以使得数据在不同的编程层次得到有效地共享。

这一点,是由ThreadLocal模式的实现机理决定的。因为实现ThreadLocal模式的一个重要步骤,就是构建一个静态的共享存储空间。从而使得任何对象在任何时刻都可以安全地对数据进行访问。

downpour 写道

结论 使用ThreadLocal模式,可以对执行逻辑与执行数据进行有效解耦。

这一点是ThreadLocal模式给我们带来的最为核心的一个影响。因为在一般情况下,Java对象之间的协作关系,主要通过参数和返回值来进行消息传递,这也是对象协作之间的一个重要依赖。而ThreadLocal模式彻底打破了这种依赖关系,通过线程安全的共享对象来进行数据共享,可以有效避免在编程层次之间形成数据依赖。这也成为了XWork事件处理体系设计的核心。

Struts2的线程安全 
一般情况,我们的ActionContext都是通过:ActionContext context = (ActionContext) actionContext.get();来获取的。我们再来看看这里的actionContext对象的创建:

static ThreadLocal actionContext=new ActionContextThreadLocal();,

ActionContextThreadLocal是实现ThreadLocal的一个内部类。ThreadLocal可以命名为“线程局部变量”,它为每一个使用该变量的线程都提供一个变量值的副本,使每一个线程都可以独立地改变自己的副本,而不会和其它线程的副本冲突。这样,我们ActionContext里的属性只会在对应的当前请求线程中可见,从而保证它是线程安全的。

Struts2的action中就像一个POJO一样,定义了很多的类变量。此时,就使用scope=prototype来指定是个原型模式,而不是单例,这样就解决了线程安全问题。每个线程都是一个新的实例

在Struts2.0中,Action已经与Servlet API完全分离,这使得Struts2.0的Action具有了更加灵活和低耦合的特性,与Struts1.0相比较而言是个巨大的进步。虽然 Struts2.0的Action已经与Servlet API完全分离,但我们在实现业务逻辑处理时经常需要访问Servlet中的对象,如Session、Application等。Struts2.0 提供了一个名字为ActionContext的类,在Action中可以通过该类获得Servlet API。
     ActionContext是一个Action的上下文对象,Action运行期间所用到的数据都保存在ActionContext中(如Session,客户端提交的参数等信息)。
  在Action中可以通过下面的代码来创建和使用ActionContext类,关于该类的方法介绍如下所示:
ActionContext ac=ActionContext.getContext();

以下是ActionContext类的常用方法
1.Object get(Object key) :通过参数key来查找当前ActionContext中的值
2.Map getApplication() :返回一个Application级的Map对象
3.Static ActionContext getContext() :获得当前线程的ActionContext对象
4.Map getParameters() :返回一个包含所有HttpServletRequest参数信息的Map对象
5.Map getSession() :返回一个Map类型的HttpSession对象
6.Void put(Object key,Object value) :向当前ActionContext对象中存入名值对信息
7.Void setApplication(Map application) :设置Application上下文
8.Void setSession(Map session) :设置一个Map类型的Session值

Struts2 控制流程
1) 请求到来 
2) 创建 ValueStack( Action 放栈顶),迕行初始化 
3) 调用拦截器 Interceptor,在拦截器中是可以访问 ValueStack 的 
4) 调用 Action,执行 execute()方法 
5) 调用 Result, Result 负责把数据显示给用户 
6) 最后到页面,通过标记库(Taglib)取出数据

当一个请求到达Servlet容器(Tomcat)后,将被传递给一个标准的过滤器链,在这个过滤器链中包括了可选的ActionContextCleanUp过滤器.当在Struts2 Web应用程序中集成SiteMesh时,才会用到此链。接下来,必须的FilterDispatcher被调用,它轮询ActonMapper(org.apache.struts2.dispatcher.mapper.ActionMapper),以便确认这个请求是否应该调用一个action。如果ActionMapper确定了一个请求应该被调用,那么FilterDispatcher就把控制权委派给ActionProxy(com.opensymphony.xwork2.ActionProxy),ActionProxy询问框架的配置文件管理器(它从struts.xml文件中读取配置信息),接下来,ActionProxy创建一个实现了命令模式的ActionInvocation,ActionInvocation在调用action之前会一次调用所有配置的连接器。一旦action执行返回,ActionInvocation就要struts.xml里面配置),然后执行这个result,通常情况下result会调用JSP或者freeMarker模板呈现页面(但不总是这样,result也可以是一个action链).

这里介绍一下Struts2框架的组成部分:

1.ActionMapper和ActionMapping:

org.apache.struts2.dispatcher.mapper.ActionMapper接口在HTTP请求和action调用请求之间提供了一个映射,当给定一个HTTP请求时,ActionMapper根据请求的URL来查找是否有对应的action调用。如果有则返回一个描述了action调用的

ActionMapping,如果没有找到匹配的action调用请求,则返回null;

Struts2框架对该接口提供的默认实现是org.apacher.struts2.disspatcher.mapper.

DefaultActionMapper.

ActionMapping本质上是一个数据传输对象,它将Action类和要执行的方法的详细资料收集在一起,ActionMapping由org.apache.struts2.dispatcher.Dispatcher和各种用户接口组合使用。

ActionMapping的完整类名是

org.apacher.struts2.dispatcher.mapper.ActionMapping.

2.ActionProxy&ActionInvocation

Action的一个代理,由ActionProxyFactory创建,它本身不包括Action实例,默认实现DefaultActionProxy是由ActionInvocation持有Action实例。ActionProxy作用是如何取得Action,无论是本地还是远程。而ActionInvocation的作用是如何执行Action,拦截器的功能就是在ActionInvocation中实现的。

ConfigurationProvider&Configuration

ConfigurationProvider就是Struts2中配置文件的解析器,Struts2中的配置文件主要是尤其实现类XmlConfigurationProvider及其子类

StrutsXmlConfigurationProvider来解析。

3.ActionContext

是action执行的上下文,每一个上下文都相当于一个action执行所需要的一组对象的容器,例如session,application,parameters,locale等.

ActionContext包含了大量执行期间有用的环境信息,这些信息由org.apacher.

struts2.dispatcher.Dispatcher类在创建ActionProxy前设置,

并封装到一个Map对象extraContext中,

Map<String, Object> extraContext = createContextMap(request,

response, mapping, context);

该对象随后被作为参数传递给ActionProxyFactory的createActionProxy()方法.

ActionProxy proxy = config.getContainer().getInstance(ActionProxyFactory.class).createActionProxy(

namespace, name, method, extraContext, true, false);

ActionContext是线程本地的,这就意味着在ActionContext中存储的值对于每个线程都是唯一的,所以对于某个Action,如果要从ActionContext中获取数据,不需要担心线程安全问题。

ActionContext是被存放在当前线程中的,获取ActionContext也是从ThreadLocal中获取的。所以在执行拦截器、 action和result的过程中,由于他们都是在一个线程中按照顺序执行的,所以可以可以在任意时候在ThreadLocal中获取 ActionContext。ActionContext包括了很多信息,比如Session、Application、Request、Locale、ValueStack等,其中 ValueStack可以解析ognl表达式,来动态后去一些值,同时可以给表达式提供对象。

ActionContext(com.opensymphony.xwork.ActionContext)是Action执行时的上下文,上下文可以看作是一个容器 (其实我们这里的容器就是一个Map而已),它存放的是Action在执行时需要用到的对象. 一般情况, 我们的ActionContext都是通过: ActionContext context = (ActionContext) actionContext.get(); 来获取的.我们再来看看这里的actionContext对象的创建:

static ThreadLocal actionContext = new ActionContextThreadLocal();

ActionContextThreadLocal是实现ThreadLocal的一个内部类.ThreadLocal可以命名为"线程局部变量",它为每一个使用该变量的线程都提供一个变量值的副本,使每一个线程都可以独立地改变自己的副本,而不会和其它线程的副本冲突.这样,我们 ActionContext里的属性只会在对应的当前请求线程中可见,从而保证它是线程安全的.通过ActionContext取得

HttpSession: Map session = ActionContext.getContext().getSession();

(通过Map模拟HttpServlet的对象,操作更方便)

ActionConext的完整类名是:org.opensymphony.xwork2.ActionContext.

4.result

com.opensymphony.xwork2.Result接口代表action执行后的结果。每一个action 执行都需要返回一个String类型的结果码,用于配置result元素列表中选择对应的result。result在struts.xml文件中进行配置。

Result接口的不同实现代表了不同类型的结果输出,Struts2框架提供的Result 实现包括了Servlet转发,Servlet重定向,Velocity模板输出,FreeMarker模板输出,JasperReports(可生成PDF,CVS,XML等)和ActionChainResult(可用于从当前action 到其他action的链式处理)等.

Struts2框架的调用流程:

1>当Servlet容器接收到一个请求之后,将请求交给了在web.xml文件中配置的过滤器  FilterDispatcher,调用它的doFilter()方法。

2>FilterDispatcher询问ActionMapper,以便确认这个请求是否有对应的action调用.

3>ActionMapper返回一个描述了action调用的ActionMapping对象

4>FilterDispatcher调用Dispatcher类的serviceAction()方法。

5>FilterDispatcher调用ActionProxy的execute()方法。

6>ActionProxy设置ActionInvocation对象的执行上下文,然后调用其invoke()方法。

7>ActionInvocation的invoke()方法从拦截器映射中查找尚未执行的拦截器,调用它的intercepet(invocation)方法,并将自身对象的引用作为参数传递个拦截器。

8>拦截器完成某些预处理工作后,反过来调用ActionInvocation的invoke()方法,

ActionInvocation维护着自己的状态,所以它知道哪些拦截器已经被执行,如果还没有执行的拦截器,就继续执行它的intercept(invocation)方法。

9>如果所有的拦截器都已经执行过了,就调用action实例的execute()方法(如果在struts.xml文件中没有被设置成其它方法的话).

10>ActionInvocation根据action执行返回的结果码,查找对应的Result,调用result的execute(invocation),将结果页面呈现给用户.

11>ActionInvocation的invoke()方法将控制权返回给拦截器映射中的最后一个拦截器,该拦截器完成所有必须的后期处理工作,然后从intercepter(invocation)返回,允许前一个拦截器执行它自己的后处理工作。如此反复,直到所有的拦截器都成功返回。

12>ActionInvocation的invoke0方法执行完毕后,向ActionProxy返回一个String类型的结果码,最后ActionProxy清理状态并返回.

时间: 2024-10-09 22:36:09

【转】Struts2的线程安全 和Struts2中的设计模式----ThreadLocal模式的相关文章

[转] Android中的设计模式-备忘录模式

转自Android中的设计模式-备忘录模式 定义 备忘录设计模式的定义就是把对象的状态记录和管理委托给外界处理,用以维持自己的封闭性. 比较官方的定义 备忘录模式(Memento Pattern)又叫做快照模式(Snapshot Pattern)或Token模式,是GoF的23种设计模式之一,属于行为模式. 定义:在不破坏封闭的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态.这样以后就可将该对象恢复到原先保存的状态. 角色 笔记本:很多的内部状态需要被建立一个备忘录来管理,创建和取出

Android中的设计模式-状态模式

状态模式说明 "状态模式允许一个对象在其内部状态改变的时候改变其行为.这个对象看上去就像是改变了它的类一样." –<JAVA与模式> 管理者持有多种状态,状态切换后,管理者调用Handle方法时,间接调用状态类中的Handle方法,从而根据当前状态的不同,就可以表现出不同的结果. 状态模式类图 状态模式使用示例 例如一个变形金刚,假设它有3中状态:汽车状态,人形状态,飞机状态. 不同的状态进行战斗的时候,采用的方式不同,分别是"撞击碾压","赤

[工作中的设计模式]解释器模式模式Interpreter

一.模式解析 解释器模式是类的行为模式.给定一个语言之后,解释器模式可以定义出其文法的一种表示,并同时提供一个解释器.客户端可以使用这个解释器来解释这个语言中的句子. 以上是解释器模式的类图,事实上我很少附上类图,但解释器模式确实比较抽象,为了便于理解还是放了上来,此模式的要点是: 1.客户端提供一个文本.表达式或者其他,约定解析格式 2.针对文本中可以分为终结符表达式和非终结符表达式, 3.终结符表达式无需进一步解析,但仍需要转化为抽象接口的实例 4.针对非终结表达式,没一种标示需要定义一种解

[工作中的设计模式]策略模式stategy

一.模式解析 策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换.策略模式让算法独立于使用它的客户而独立变化. 策略模式的关键点为: 1.多种算法存在 2.算法继承同样的接口,执行同样的行为,为可以替代的 3.算法调用者唯一,算法调用者可以灵活改变自己需要调用的算法,从而实现计算. 二.模式代码 算法接口: /** * 算法统一接口,所有算法继承此接口 * @author zjl * @time 2016-1-24 * */ public interface IStra

[工作中的设计模式]组合模式compnent

一.模式解析 将对象组合成树形结构以表示“部分整体”的层次结构.组合模式使得用户对单个对象和使用具有一致性. 组合模式的要点是: 1.对象整体以树形层次结构进行展示 2.树的根节点和子节点均可以添加删除子节点,叶子节点无子节点 3.可以通过节点的行为动作调用并展示他所有自己点的行为 4.为了方便的实现无限节点的扩展,我们通常定义一个公共的接口,所有子节点和叶子节点均实现此接口 二.模式代码 1.公共接口,供所有子节点和叶子节点实现 package component.patten; public

[工作中的设计模式]桥接模式bridge

一.模式解析: 策略模式一节讲过,通过扩展持有者,使持有者形成抽象类,然后实现多个具体持有者,策略模式可以转化为桥接模式. 桥接模式定义为:将抽象部分与实现部分分离,使它们都可以独立的变化,在软件系统中,某些类型由于自身的逻辑,它具有两个或多个维度的变化,使用桥接模式可以应对多维度的变化. 主要有两个要点 1.有两个维度的变化,彼此的变化应该不会受到对方的干扰 2.通过接口进行关联,共有n*m种组合 3.其中一个维度,保存这另外一个维度的引用 二.模式代码: 维度一 interface Impl

[工作中的设计模式]模板模式

一.模式解析 准备一个抽象类,将部分逻辑以具体方法以及具体构造函数的形式实现,然后声明一些抽象方法来迫使子类实现剩余的逻辑.不同的子类可以以不同的方式实现这些抽象方法,从而对剩余的逻辑有不同的实现.这就是模板方法模式的用意 模板模式的关键点为: 1.有一个父类,将整体业务逻辑和公用方法进行封装: 2.父类将具体的有差异的业务定义为抽象方法: 3.子类继承父类后,实现这些抽象方法,完成对自己业务流程的: 4.子类不可以改变父类的整体业务逻辑流程: 5.子类也可以覆盖父类中其他方法,实现定制化业务

[工作中的设计模式]原型模式prototype

一.模式解析 提起prototype,最近看多了js相关的内容,第一印象首先是js的原型 var Person=function(name){ this.name=name; } Person.prototype.run=function(){ alert(this.name+" is running"; } 此处的原型是js的特殊定义,在原型上定义的属性和方法所有的类进行共享. 不过设计模式中的原型模式指的是:将已有的对象作为原型,拷贝出一份具有相同属性的新的对象. 模式定义为:原型

[工作中的设计模式]备忘录模式memento

一.模式解析 备忘录对象是一个用来存储另外一个对象内部状态的快照的对象.备忘录模式的用意是在不破坏封装的条件下,将一个对象的状态捕捉(Capture)住,并外部化,存储起来,从而可以在将来合适的时候把这个对象还原到存储起来的状态.备忘录模式常常与命令模式和迭代子模式一同使用. 备忘录模式可以根据客户指令,将相应的对象特有属性进行快照,如果客户要恢复对象,则根据快照提供的特有属性进行还原. 二.模式代码 package memento.patten; /** *备忘录类,同时指定要保存的对象属性