java5中的锁1

本文可作为传智播客《张孝祥-Java多线程与并发库高级应用》的学习笔记。

一个简单的例子

两个线程,一个不断打印a,一个不断打印b

public class LockTest {
    public static void main(String[] args){
        final Outputer outputer = new Outputer();
        new Thread(new Runnable(){
            @Override
            public void run() {
                while(true){
                    try {
                        Thread.sleep(10);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                    outputer.output("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa");
                }                   

            }
        }).start();

        new Thread(new Runnable(){
            @Override
            public void run() {
                while(true){
                    try {
                        Thread.sleep(10);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                    outputer.output("bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb");
                }//a的数量与b的数量一致

            }
        }).start();

    }

    static class Outputer{
        public void output(String name){
            int len = name.length();
            try{
                for(int i=0;i<len;i++){
                    System.out.print(name.charAt(i));
                }
                System.out.println();
            }finally{

            }
        }
    }
}

最后的部分结果

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

b

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

为什么会这样?

很简单,在输出b的时候,还没有输出完,a线程(打印a的那个线程)已经抢到了控制权,开始打印a,等a线程将a输出完后,并且打印了一个回车后,b线程才抢回系统控制权,打印它上一次最后剩下的一个b。

要解决上面的问题很简单:

    static class Outputer{
        public synchronized void output(String name){
            int len = name.length();
            //.....
        }
    }

这样一来,我们就保证了Outputer类里的output方法是原子性的,不会有两个线程同时执行它。

就上面的例子而言我们是否还有更好的方法呢?

有。

java5中提供了一种更加面向对象的技术类解决多线程之间的互斥问题-----锁。

java.util.concurrent.locks Interface Lock

锁技术的核心就是Lock及它的实现类。

基本锁

上面的例子如果使用锁,代码如下

    static class Outputer{
        Lock lock = new ReentrantLock();

        public void output(String name){
            int len = name.length();
            lock.lock();      //标识1
            try{
                for(int i=0;i<len;i++){
                    System.out.print(name.charAt(i));
                }
                System.out.println();
            }finally{
                lock.unlock(); //标识2
            }
        }

线程a执行到上面代码的标识1处加锁,当线程a在输出字符a时,线程b也执行到了标识1处。此时线程b是不能获得锁的。它被阻塞到标识1处,直到线程a打印完之后在标识2处释放了锁。(线程a线程b共用一把锁,也就是Lock lock = new ReentrantLock())

另外为什么标识2出的释放锁放到了finally里,大家应该明白了吧。

读与写

上面的问题中output的主体(len是方法内部的局部变量,为每个线程自有,互不干涉)被全部互斥,它保证了任何时候,都只有一个线程执行标识1与标识2直接的代码。

但是我们得意识到:对共有数据的操作,基本可以分为两类,读与写。

对共有资源操作的时候,我们应该遵循三大准则:

1 当一个线程对资源进行写操作的时候,别的线程既不能对资源读也不能对资源写。

2 当一个线程对资源进行读操作的时候,别的线程不能对资源写。

3 当一个线程对资源进行读操作的时候,别的线程能对资源读。

一二准则保证了系统的正确性。第三准则能提高系统的性能。 毕竟多个线程对资源进行读操作是可以的。

看下面这个既有读又有写的例子。

public class ReadWriteLockTest {
    public static void main(String[] args) {
        final Queue3 q3 = new Queue3();
        for(int i=0;i<3;i++)
        {
            new Thread(){
                public void run(){
                    while(true){
                        q3.get();
                    }
                }

            }.start();

            new Thread(){
                public void run(){
                    while(true){
                        q3.put(new Random().nextInt(10000));
                    }
                }            

            }.start();
        }

    }
}

class Queue3{
    private Object data = null;//共享数据,只能有一个线程能写该数据,但可以有多个线程同时读该数据。

    public void get(){
        try {
            System.out.println(Thread.currentThread().getName() + " be ready to read data!");
            Thread.sleep((long)(Math.random()*1000));
            System.out.println(Thread.currentThread().getName() + "have read data :" + data);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    public void put(Object data){
        try {
            System.out.println(Thread.currentThread().getName() + " be ready to write data!");
            Thread.sleep((long)(Math.random()*1000));
            this.data = data;
            System.out.println(Thread.currentThread().getName() + " have write data: " + data);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

结果如下

Thread-0 be ready to read data!

Thread-1 be ready to write data!

Thread-2 be ready to read data!

Thread-3 be ready to write data!

Thread-4 be ready to read data!

Thread-5 be ready to write data!

Thread-0have read data :null

Thread-0 be ready to read data!

Thread-3 have write data: 5280

Thread-3 be ready to write data!

Thread-1 have write data: 5839

Thread-1 be ready to write data!

Thread-4have read data :5839

我们可以看到 读中有写  写中有写 写中有读 完全乱套了。

我们试试个两个方法加上synchronized 结果如下

Thread-0 be ready to read data!

Thread-0have read data :null

Thread-5 be ready to write data!

Thread-5 have write data: 7931

Thread-5 be ready to write data!

Thread-5 have write data: 9564

Thread-5 be ready to write data!

Thread-5 have write data: 1203

Thread-5 be ready to write data!

Thread-5 have write data: 8870

Thread-4 be ready to read data!

Thread-4have read data :8870

Thread-3 be ready to write data!

Thread-3 have write data: 9334

Thread-3 be ready to write data!

Thread-3 have write data: 2680

Thread-3 be ready to write data!

Thread-3 have write data: 9948

Thread-3 be ready to write data!

Thread-3 have write data: 375

Thread-2 be ready to read data!

读与写完全互斥,读的时候不写,写的时候不读。满足一二准则。

读写锁

为了实现准则三,在java5中的出现了读写锁。

java.util.concurrent.locks Interface ReadWriteLock

ReadWriteLock有两个方法

Lock     readLock()   Returns the lock used for reading.

Lock     writeLock()  Returns the lock used for writing.

得到两种锁后,就可以调用锁的lock与unlock方法了。

一般使用它的子类ReentrantReadWriteLock来产生ReadWriteLock

其签名如下:

public class ReentrantReadWriteLock extends Object implements ReadWriteLock, Serializable

看看使用方法

class Queue3{
    private Object data = null;//共享数据,只能有一个线程能写该数据,但可以有多个线程同时读该数据。
    ReadWriteLock rwl = new ReentrantReadWriteLock();
    public void get(){
        rwl.readLock().lock();
        try {
            System.out.println(Thread.currentThread().getName() + "              be ready to read data!");
            Thread.sleep(20);
            System.out.println(Thread.currentThread().getName() + "       have read data :" + data);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }finally{
            rwl.readLock().unlock();
        }
    }

    public void put(Object data){

        rwl.writeLock().lock();
        try {
            System.out.println(Thread.currentThread().getName() + " be ready to write data!");
            Thread.sleep(20);
            this.data = data;
            System.out.println(Thread.currentThread().getName() + " have write data: " + data);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }finally{
            rwl.writeLock().unlock();
        }
    }
}

结果如下

Thread-5 have write data: 7329

Thread-0              be ready to read data!

Thread-0       have read data :7329

Thread-1 be ready to write data!

Thread-1 have write data: 1361

Thread-2              be ready to read data!

Thread-4              be ready to read data!

Thread-0              be ready to read data!

Thread-2       have read data :1361

Thread-2              be ready to read data!

Thread-4       have read data :1361

我们可以看到 线程1的写是完全互斥的。

而线程2 4 0的读是可以同步进行的。

这是读写锁最简单的例子,下一节,我们看一个稍微复杂的,把读锁与写锁放到一个方法内的例子。

感谢glt

时间: 2024-10-13 22:25:46

java5中的锁1的相关文章

java5 中的锁的用法 Lock lock = new ReentrantLock();

public class LockTest { /** * @param args */ public static void main(String[] args) { new LockTest().init(); } private void init(){ final Outputer outputer = new Outputer(); new Thread(new Runnable(){ @Override public void run() { while(true){ try {

11.Java5的线程锁技术

1 import java.util.concurrent.locks.Lock; 2 import java.util.concurrent.locks.ReentrantLock; 3 4 5 /** 6 * java5的线程锁技术 7 * Lock比传统线程模型中的synchronized方式更加面向对象,与生活中的锁类似. 8 * 锁本身也应该是一个对象.两个线程执行的代码片段要实现同步互斥的效果,它们必须 9 * 用在同一个Lock对象.锁是上在代表要操作的资源的类的内部方法中,而不是

Mysql中那些锁机制之InnoDB

我们知道mysql在曾经.存储引擎默认是MyISAM.可是随着对事务和并发的要求越来越高,便引入了InnoDB引擎.它具有支持事务安全等一系列特性. InnoDB锁模式 InnoDB实现了两种类型的行锁. 共享锁(S):同意一个事务去读一行,阻止其它事务获得同样的数据集的排他锁. 排他锁(X):同意获得排他锁的事务更新数据,可是组织其它事务获得同样数据集的共享锁和排他锁. 能够这么理解: 共享锁就是我读的时候,你能够读,可是不能写.排他锁就是我写的时候.你不能读也不能写.事实上就是MyISAM的

Innodb中的锁

虽然比较擅长的是Oracle,但是公司使用的是MySQL数据库,所以不得不对MySQL数据库多研究一下.今天就谈一下MySQL中的锁. 谈锁之前,要明白为什么会有锁这种东西.之所以有锁,大部分情况下是为了实现事务(transaction)之间的隔离,那么事务之间有几种隔离方式,各种隔离方式又是为了达到什么效果呢?先来说一下各种读现象. 脏读:即一个事务A读取了事务B还没有提交过的数据: 不可重复读:即事务A在第一次按照某条SQL语句读取后跟第二次按照相同的SQL语句读取数据库,这段时间内,事务B

c#语言-多线程中的锁系统

介绍 平常在多线程开发中,总避免不了线程同步.这次就对net多线程中的锁系统做个简单描述. 目录 一:lock.Monitor 1:基础. 2: 作用域. 3:字符串锁. 二: mutex 三:Semaphore 四:总结 一:lock.Monitor 1:基础 Lock是Monitor语法糖简化写法.Lock在IL会生成Monitor. //======Example 1===== string obj = "helloworld"; lock (obj) { Console.Wri

十一、JUC包中的锁

JUC,即java.util.concurrent. 悲观锁和乐观锁 悲观锁和乐观锁是一种思想. 悲观锁,持有一种悲观的态度,认为会出现很坏的情况,所以,先做预防措施.独占锁是一种悲观锁,synchronized就是一种独占锁. 而乐观锁,则是持有一种持有种乐观的态度,认为不会出现什么问题,有问题了再说. 对于常用多线程编程的人估计知道,在jdk5之前,在多线程编程的时候,为了保证多个线程对一个对象同时进行访问时,我们需要加同步锁synchronized,保证对象的在使用时的正确性,但是加锁的机

Hibernate中的锁机制

锁机制:是数据库为了保证数据的一致性<一个事务的各种操作不相互影响>而使各种共享资源在被并发访问访问变得有序所设计的一种规则,用来保证在当前用户进行操作数据的时候其他的用户不能对同一数据进行任何操作. Hibernate是一个持久层框架,他的操作就是用来存取数据库中的数据,为了保证数据的一致性,hibernate提供了自己的锁机制. Hibernate的锁机制: 乐观锁:<pessimistic locking>他认为一般不会出现多个用户同时操作同一条数据的情况,因此不做资料库层次

sql server中的锁 事务锁 更新锁 保持锁 共享锁 你知道吗?

锁定数据库的一个表 SELECT * FROM table WITH (HOLDLOCK) 注意: 锁定数据库的一个表的区别 SELECT * FROM table WITH (HOLDLOCK) 其他事务可以读取表,但不能更新删除 SELECT * FROM table WITH (TABLOCKX) 其他事务不能读取表,更新和删除 SELECT 语句中"加锁选项"的功能说明 SQL Server提供了强大而完备的锁机制来帮助实现数据库系统的并发性和高性能.用户既能使用SQL Ser

MySQL 温故而知新--Innodb存储引擎中的锁

近期碰到非常多锁问题.所以攻克了后,细致再去阅读了关于锁的书籍,整理例如以下:1,锁的种类 Innodb存储引擎实现了例如以下2种标准的行级锁: ? 共享锁(S lock),同意事务读取一行数据. ?  排它锁(X lock).同意事务删除或者更新一行数据. 当一个事务获取了行r的共享锁.那么另外一个事务也能够马上获取行r的共享锁,由于读取并未改变行r的数据.这样的情况就是锁兼容. 可是假设有事务想获得行r的排它锁,则它必须等待事务释放行r上的共享锁-这样的情况就是锁不兼容.二者兼容性例如以下表