Java 常用排序算法/程序员必须掌握的 8大排序算法

Java 常用排序算法/程序员必须掌握的 8大排序算法

分类:

1)插入排序(直接插入排序、希尔排序)

2)交换排序(冒泡排序、快速排序)

3)选择排序(直接选择排序、堆排序)

4)归并排序

5)分配排序(基数排序)

所需辅助空间最多:归并排序

所需辅助空间最少:堆排序

平均速度最快:快速排序

不稳定:快速排序,希尔排序,堆排序。

先来看看 8种排序之间的关系:

1.直接插入排序

(1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排

好顺序的,现在要把第n 个数插到前面的有序数中,使得这 n个数

也是排好顺序的。如此反复循环,直到全部排好顺序。

(2)实例

(3)用java实现

[java] view plaincopy

1.  package com.njue;

2.

3.  publicclass insertSort {

4.

5.  public insertSort(){

6.      inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,

34,15,35,25,53,51};

7.      int temp=0;

8.      for(int i=1;i<a.length;i++){

9.         int j=i-1;

10.        temp=a[i];

11.        for(;j>=0&&temp<a[j];j--){

12.            a[j+1]=a[j];  //将大于temp 的值整体后移一个单位

13.        }

14.        a[j+1]=temp;

15.     }

16.

17.     for(int i=0;i<a.length;i++){

18.        System.out.println(a[i]);

19.     }

20. }

2.   希尔排序(最小增量排序)

(1)基本思想:算法先将要排序的一组数按某个增量 d(n/2,n为要排序数的个数)分成若

干组,每组中记录的下标相差 d.对每组中全部元素进行直接插入排序,然后再用一个较小

的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到 1 时,进行直接

插入排序后,排序完成。

(2)实例:

(3)用java实现

[java] view plaincopy

1.  publicclass shellSort {

2.

3.  publicshellSort(){

4.

5.      int a[]={1,54,6,3,78,34,12,45,56,100};

6.      double d1=a.length;

7.      int temp=0;

8.

9.      while(true){

10.        d1= Math.ceil(d1/2);

11.        int d=(int) d1;

12.        for(int x=0;x<d;x++){

13.

14.            for(int i=x+d;i<a.length;i+=d){

15.               int j=i-d;

16.               temp=a[i];

17.               for(;j>=0&&temp<a[j];j-=d){

18.                    a[j+d]=a[j];

19.               }

20.               a[j+d]=temp;

21.            }

22.        }

23.

24.        if(d==1){

25.            break;

26.        }

27.

28.     for(int i=0;i<a.length;i++){

29.        System.out.println(a[i]);

30.     }

31. }

3.简单选择排序

(1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;

然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一

个数比较为止。

(2)实例:

(3)用java实现

[java] view plaincopy

1.  publicclass selectSort {

2.

3.      public selectSort(){

4.         int a[]={1,54,6,3,78,34,12,45};

5.         int position=0;

6.         for(int i=0;i<a.length;i++){

7.             int j=i+1;

8.             position=i;

9.             int temp=a[i];

10.            for(;j<a.length;j++){

11.               if(a[j]<temp){

12.                  temp=a[j];

13.                  position=j;

14.               }

15.            }

16.            a[position]=a[i];

17.            a[i]=temp;

18.        }

19.

20.        for(int i=0;i<a.length;i++)

21.            System.out.println(a[i]);

22.     }

23. }

4,      堆排序

(1)基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。

堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或

(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的

定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观

地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一

棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然

后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类

推,直到只有两个节点的堆,并对它们作交换,最后得到有 n个节点的有序序列。从算法

描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所

以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。

(2)实例:

初始序列:46,79,56,38,40,84

建堆:

交换,从堆中踢出最大数

剩余结点再建堆,再交换踢出最大数

依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。

(3)用java实现

[java] view plaincopy

1.  import java.util.Arrays;

2.

3.  publicclass HeapSort {

4.      inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,

34,15,35,25,53,51};

5.      public  HeapSort(){

6.         heapSort(a);

7.      }

8.

9.      public  void heapSort(int[] a){

10.         System.out.println("开始排序");

11.         int arrayLength=a.length;

12.         //循环建堆

13.         for(int i=0;i<arrayLength-1;i++){

14.             //建堆

15.             buildMaxHeap(a,arrayLength-1-i);

16.             //交换堆顶和最后一个元素

17.             swap(a,0,arrayLength-1-i);

18.             System.out.println(Arrays.toString(a));

19.         }

20.     }

21.

22.

23.

24.     private  void swap(int[] data, int i, int j) {

25.         // TODO Auto-generated method stub

26.         int tmp=data[i];

27.         data[i]=data[j];

28.         data[j]=tmp;

29.     }

30.

31.     //对data 数组从0到lastIndex 建大顶堆

32.     privatevoid buildMaxHeap(int[] data, int lastIndex) {

33.         // TODO Auto-generated method stub

34.         //从lastIndex 处节点(最后一个节点)的父节点开始

35.

36.         for(int i=(lastIndex-1)/2;i>=0;i--){

37.             //k 保存正在判断的节点

38.             int k=i;

39.             //如果当前k节点的子节点存在

40.             while(k*2+1<=lastIndex){

41.                 //k 节点的左子节点的索引

42.                 int biggerIndex=2*k+1;

43.                 //如果biggerIndex 小于lastIndex,即biggerIndex+1 代表的k 节点的

右子节点存在

44.                 if(biggerIndex<lastIndex){

45.                     //若果右子节点的值较大

46.                     if(data[biggerIndex]<data[biggerIndex+1]){

47.                         //biggerIndex 总是记录较大子节点的索引

48.                         biggerIndex++;

49.                     }

50.                 }

51.

52.                 //如果k节点的值小于其较大的子节点的值

53.                if(data[k]<data[biggerIndex]){

54.                     //交换他们

55.                     swap(data,k,biggerIndex);

56.                     //将biggerIndex 赋予k,开始while 循环的下一次循环,重新保证k

节点的值大于其左右子节点的值

57.                     k=biggerIndex;

58.                 }else{

59.                     break;

60.                 }

61.             }

62.         }

63.     }

64. }

5.冒泡排序

(1)基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对

相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的

数比较后发现它们的排序与排序要求相反时,就将它们互换。

(2)实例:

(3)用java实现

[java] view plaincopy

1.  publicclass bubbleSort {

2.

3.  publicbubbleSort(){

4.       inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23

,34,15,35,25,53,51};

5.      int temp=0;

6.      for(int i=0;i<a.length-1;i++){

7.         for(int j=0;j<a.length-1-i;j++){

8.           if(a[j]>a[j+1]){

9.             temp=a[j];

10.            a[j]=a[j+1];

11.            a[j+1]=temp;

12.          }

13.        }

14.     }

15.

16.     for(int i=0;i<a.length;i++){

17.        System.out.println(a[i]);

18.    }

19. }

6.快速排序

(1)基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,

将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其

排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。

(2)实例:

(3)用java实现

[java] view plaincopy

1.  publicclass quickSort {

2.

3.    inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34

,15,35,25,53,51};

4.  publicquickSort(){

5.      quick(a);

6.      for(int i=0;i<a.length;i++){

7.         System.out.println(a[i]);

8.      }

9.  }

10. publicint getMiddle(int[] list, int low, int high) {

11.             int tmp =list[low];    //数组的第一个作为中轴

12.             while (low < high){

13.                 while (low < high&& list[high] >= tmp) {

14.                    high--;

15.                 }

16.

17.                 list[low] =list[high];   //比中轴小的记录移到低端

18.                 while (low < high&& list[low] <= tmp) {

19.                     low++;

20.                 }

21.

22.                 list[high] =list[low];   //比中轴大的记录移到高端

23.             }

24.            list[low] = tmp;              //中轴记录到尾

25.             return low;                   //返回中轴的位置

26. }

27.

28. publicvoid _quickSort(int[] list, int low, int high) {

29.             if (low < high){

30.                int middle =getMiddle(list, low, high);  //将list 数组进行一分

为二

31.                _quickSort(list, low, middle - 1);       //对低字表进行递归排

32.                _quickSort(list,middle + 1, high);       //对高字表进行递归排

33.             }

34. }

35.

36. publicvoid quick(int[] a2) {

37.             if (a2.length > 0) {    //查看数组是否为空

38.                 _quickSort(a2,0, a2.length - 1);

39.             }

40. }

41. }

7、归并排序

(1)基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有

序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并

为整体有序序列。

(2)实例:

(3)用java实现

[java] view plaincopy

1.  import java.util.Arrays;

2.

3.  publicclass mergingSort {

4.

5.  inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,1

5,35,25,53,51};

6.

7.  publicmergingSort(){

8.      sort(a,0,a.length-1);

9.      for(int i=0;i<a.length;i++)

10.        System.out.println(a[i]);

11. }

12.

13. publicvoid sort(int[] data, int left, int right) {

14.     // TODO Auto-generatedmethod stub

15.     if(left<right){

16.         //找出中间索引

17.         int center=(left+right)/2;

18.         //对左边数组进行递归

19.         sort(data,left,center);

20.         //对右边数组进行递归

21.         sort(data,center+1,right);

22.         //合并

23.         merge(data,left,center,right);

24.     }

25.

26. }

27.

28. publicvoid merge(int[] data, int left, int center, int right) {

29.     // TODO Auto-generatedmethod stub

30.     int [] tmpArr=newint[data.length];

31.     int mid=center+1;

32.     //third 记录中间数组的索引

33.     int third=left;

34.     int tmp=left;

35.     while(left<=center&&mid<=right){

36.         //从两个数组中取出最小的放入中间数组

37.         if(data[left]<=data[mid]){

38.             tmpArr[third++]=data[left++];

39.         }else{

40.             tmpArr[third++]=data[mid++];

41.         }

42.

43.     }

44.

45.     //剩余部分依次放入中间数组

46.     while(mid<=right){

47.         tmpArr[third++]=data[mid++];

48.     }

49.

50.     while(left<=center){

51.         tmpArr[third++]=data[left++];

52.     }

53.

54.     //将中间数组中的内容复制回原数组

55.     while(tmp<=right){

56.         data[tmp]=tmpArr[tmp++];

57.     }

58.     System.out.println(Arrays.toString(data));

59. }

60. }

8、基数排序

(1)基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面

补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成

以后,数列就变成一个有序序列。

(2)实例:

(3)用java实现

[java] view plaincopy

1.  import java.util.ArrayList;

2.  import java.util.List;

3.

4.  public class radixSort {

5.      inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,101,56,17,18

,23,34,15,35,25,53,51};

6.      public radixSort(){

7.         sort(a);

8.         for(inti=0;i<a.length;i++){

9.                System.out.println(a[i]);

10.        }

11.     }

12.     public  void sort(int[] array){

13.        //首先确定排序的趟数;

14.        int max=array[0];

15.        for(inti=1;i<array.length;i++){

16.             if(array[i]>max){

17.               max=array[i];

18.             }

19.        }

20.        int time=0;

21.        //判断位数;

22.        while(max>0){

23.           max/=10;

24.            time++;

25.        }

26.

27.         //建立10个队列;

28.        List<ArrayList> queue=newArrayList<ArrayList>();

29.        for(int i=0;i<10;i++){

30.               ArrayList<Integer>queue1=new ArrayList<Integer>();

31.            queue.add(queue1);

32.        }

33.

34.        //进行time 次分配和收集;

35.        for(int i=0;i<time;i++){

36.            //分配数组元素;

37.           for(intj=0;j<array.length;j++){

38.                //得到数字的第time+1 位数;

39.                  int x=array[j]%(int)Math.pow(10,i+1)/(int)Math.pow(10, i);

40.                  ArrayList<Integer>queue2=queue.get(x);

41.                  queue2.add(array[j]);

42.                  queue.set(x, queue2);

43.           }

44.           int count=0;//元素计数器;

45.           //收集队列元素;

46.           for(int k=0;k<10;k++){

47.                while(queue.get(k).size()>0){

48.                    ArrayList<Integer>queue3=queue.get(k);

49.                    array[count]=queue3.get(0);

50.                    queue3.remove(0);

51.                    count++;

52.                }

53.           }

54.        }

55.     }

56. }

import java.io.*;

public class Paixu {

// 冒泡排序法

public void Maopao(int a[]) {

for (int i = 1; i < a.length; i++) {

for (int j = 0; j < a.length - i; j++) {

if (a[j] > a[j + 1]) {

int temp = a[j + 1];

a[j + 1] = a[j];

a[j] = temp;

}

}

}

System.out.println("\n" + "采用冒泡排序法:");

}

// 插入排序法:

public void Charu(int a[]) {

for (int i = 1; i < a.length; i++) {

for (int j = 0; j < i; j++) {

if (a[j] > a[i]) {

int temp = a[i];

for (int k = i; k > j; k--) {

a[k] = a[k--];

}

a[j] = temp;

}

}

}

System.out.println("\n" + "采用插入排序法:");

}

// 选择排序法:

public void Xuanze(int a[]) {

for (int i = 0; i < a.length; i++) {

int position = i;

for (int j = i + 1; j < a.length; j++) {

if (a[position] > a[j]) {

int temp = a[position];

a[position] = a[j];

a[j] = temp;

}

}

}

System.out.println("\n" + "采用选择排序法:");

}

public void Print(int a[]) {

System.out.println("从小到大排序结果为:");

for (int i = 0; i < a.length; i++) {

System.out.print(a[i] + ",");

}

}

public static void main(String[] args) {

int a[] = new int[5];

Paixu px = new Paixu();

BufferedReader buf = new BufferedReader(

new InputStreamReader(System.in));

System.out.println("请输入五个整数:");

for (int i = 0; i < a.length; i++) {

try {

String s = buf.readLine();

int j = Integer.parseInt(s);

a[i] = j;

} catch (Exception e) {

System.out.println("出错了!必须输入整数,请重新输入!");

i--;

}

}

System.out.println("您输入的整数依次为:");

for (int i = 0; i < a.length; i++) {

System.out.print(a[i] + ",");

}

System.out.println("\n" + "-------------");

px.Maopao(a); // 调用冒泡算法

px.Print(a);

System.out.println("\n" + "-------------");

px.Charu(a); // 调用插入算法

px.Print(a);

System.out.println("\n" + "-------------");

px.Xuanze(a); // 调用选择算法

px.Print(a);

}

}

Java实现二分查找

现在复习下

import java.util.*;

public class BinarySearch {

public static void main(String[] args) {
   ArrayList<Integer> a = new ArrayList<Integer>();
   addIntegerInSequence(a,1,10);
   print(a);
   int pos = binarySearch(a,10);
   if ( pos != -1 )
   {
    System.out.print("Element found: " + pos);
   }
   else 
   {
    System.out.print("Element not found");
   }
}

/**
* 二分查找法
* @param a
* @param value 待查找元素
* @return
*/
public static int binarySearch(ArrayList<Integer> a, int value)
{
   int size = a.size();
   int low = 0 , high = size - 1;
   int mid;
   while (low <= high) 
   {
    mid = (low + high) / 2;
    if ( a.get(mid) < value )
    {
     low = low + 1;
    } 
    else if ( a.get(mid) > value )
    {
     high = high - 1;
    }
    else
    {
     return mid;
    }
   }
   return -1;
}

/**
* 填充顺序元素到数组
* @param a
* @param begin 开始元素
* @param size 大小
*/
public static void addIntegerInSequence(ArrayList<Integer> a, int begin, int size) 
{
   for (int i = begin; i < begin + size; i++) 
   {
    a.add(i);
   }
}

/**
* 打印数组
* @param a
*/
public static void print(ArrayList<Integer> a)
{
   Iterator<Integer> i = a.iterator();
   while (i.hasNext())
   {
    System.out.print(i.next() + " ");
   }
   System.out.println("");
}

}

/////

JAVA 库中的二分查找使用非递归方式实现,返回结果与前面写的有所不同:找不到时返回的是负数,但不一定是-1

private static int binarySearch0(int[] a, int fromIndex, int toIndex,

int key) {

int low = fromIndex;

int high = toIndex - 1;

while (low <= high) {

int mid = (low + high) >>> 1;

int midVal = a[mid];

if (midVal < key)

low = mid + 1;

else if (midVal > key)

high = mid - 1;

else

return mid; // key found

}

return -(low + 1);  // key not found.

}

时间: 2024-10-09 23:05:41

Java 常用排序算法/程序员必须掌握的 8大排序算法的相关文章

Java常用排序算法+程序员必须掌握的8大排序算法+二分法查找法

Java 常用排序算法/程序员必须掌握的 8大排序算法 本文由网络资料整理转载而来,如有问题,欢迎指正! 分类: 1)插入排序(直接插入排序.希尔排序) 2)交换排序(冒泡排序.快速排序) 3)选择排序(直接选择排序.堆排序) 4)归并排序 5)分配排序(基数排序) 所需辅助空间最多:归并排序 所需辅助空间最少:堆排序 平均速度最快:快速排序 不稳定:快速排序,希尔排序,堆排序. 先来看看 8种排序之间的关系: 1.直接插入排序 (1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2]

[转]Java 常用排序算法/程序员必须掌握的 8大排序算法

本文转自:http://www.cnblogs.com/qqzy168/archive/2013/08/03/3219201.html 本文由网络资料整理转载而来,如有问题,欢迎指正! 分类: 1)插入排序(直接插入排序.希尔排序) 2)交换排序(冒泡排序.快速排序) 3)选择排序(直接选择排序.堆排序) 4)归并排序 5)分配排序(基数排序) 所需辅助空间最多:归并排序 所需辅助空间最少:堆排序 平均速度最快:快速排序 不稳定:快速排序,希尔排序,堆排序. 先来看看 8种排序之间的关系: 1.

Java常用排序算法/程序员必须掌握的8大排序算法

转载自http://blog.csdn.net/qy1387/article/details/7752973 分类: 1)插入排序(直接插入排序.希尔排序)2)交换排序(冒泡排序.快速排序)3)选择排序(直接选择排序.堆排序)4)归并排序5)分配排序(基数排序)所需辅助空间最多:归并排序所需辅助空间最少:堆排序平均速度最快:快速排序 不稳定:快速排序,希尔排序,堆排序.    [java] view plain copy print? // 排序原始数据 private static final

程序员必须掌握的8大排序算法(Java版)

程序员必须掌握的8大排序算法(Java版) 提交 我的评论 加载中 已评论 程序员必须掌握的8大排序算法(Java版) 2015-07-28 极客学院 极客学院 极客学院 微信号 jikexueyuan00 功能介绍 极客学院官方帐号,最新课程.活动发布.欢迎大家反馈问题哟^_^ 本文由网络资料整理而来,如有问题,欢迎指正! 分类: 1)插入排序(直接插入排序.希尔排序) 2)交换排序(冒泡排序.快速排序) 3)选择排序(直接选择排序.堆排序) 4)归并排序 5)分配排序(基数排序) 所需辅助空

Java程序员必须掌握的8大排序算法

8种排序之间的关系: 1, 直接插入排序 (1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排 好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数 也是排好顺序的.如此反复循环,直到全部排好顺序. (2)实例 (3)用java实现 packagecom.njue; public class insertSort { publicinsertSort(){ inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99

Java程序员必知的8大排序

8种排序之间的关系: 1, 直接插入排序 (1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的.如此反复循环,直到全部排好顺序. (2)实例 (3)用java实现 package com.njue; public class insertSort { public insertSort(){ inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99

程序员必知的8大排序

8种排序之间的关系: 1, 直接插入排序 (1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排 好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数 也是排好顺序的.如此反复循环,直到全部排好顺序. (2)实例 (3)用java实现 package com.njue; public class insertSort { public insertSort(){ inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,

Java程序员必知的8大排序算法

8种排序之间的关系 直接插入排序 (1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排 好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数 也是排好顺序的.如此反复循环,直到全部排好顺序. (2)实例 (3)用java实现 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 public class insertSort {     public insertSort(){         int a[]={49,38,65,97,76,13,27

程序员必知的8大排序(java实现)

8种排序之间的关系: 1. 直接插入排序 (1)基本思想: 在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的.如此反复循环,直到全部排好顺序. (2)实例 (3)用java实现 package com.njue; public class insertSort { public insertSort(){      inta[]={ 49 , 38 , 65 , 97 , 76 , 13 , 27 , 49