epoll 简单介绍及例子

第一部分:Epoll简介

问题 :  Select,Poll和Epoll的区别

答案 :

Epoll和Select的区别


1. 遍历方式的区别。select判断是否有事件发生是遍历的,而epoll是事件响应的,一旦句柄上有事件来了,就马上选出来。

2. 数目的区别。select一般由一个内核参数(1024)限制了监听的句柄数,但是epoll通常受限于打开文件的数目,通常会打得多。

3. epoll自身,还有两种触发方式。水平触发和边缘触发。边沿触发的效率更高(高了不少,但是编程的时候要小心处理每个时间,防止漏掉处理某些事件)。

Select


select()系统调用提供一个机制来实现同步多元I/O:


#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int select (int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);

FD_CLR(int fd, fd_set *set);
FD_ISSET(int fd, fd_set *set);
FD_SET(int fd, fd_set *set);
FD_ZERO(fd_set *set);

调用select()将阻塞,直到指定的文件描述符准备好执行I/O,或者可选参数timeout指定的时间已经过去。

select()成功返回时,每组set都被修改以使它只包含准备好I/O的文件描述符。例如,假设有两个文件描述符,值分别是7和9,被放在readfds中。当select()返回时,如果7仍然在set中,则这个文件描述符已经准备好被读取而不会阻塞。如果9已经不在set中,则读取它将可能会阻塞(我说可能是因为数据可能正好在select返回后就可用,这种情况下,下一次调用select()将返回文件描述符准备好读取)。

第一个参数n,等于所有set中最大的那个文件描述符的值加1。

当select()返回时,timeout参数的状态在不同的系统中是未定义的,因此每次调用select()之前必须重新初始化timeout和文件描述符set。实际上,当前版本的Linux会自动修改timeout参数,设置它的值为剩余时间。因此,如果timeout被设置为5秒,然后在文件描述符准备好之前经过了3秒,则这一次调用select()返回时tv_sec将变为2。

因为文件描述符set是静态创建的,它们对文件描述符的最大数目强加了一个限制,能够放进set中的最大文件描述符的值由FD_SETSIZE指定。在Linux中,这个值是1024。本章后面我们还将看到这个限制的衍生物。

返回值和错误代码
select() 成功时返回准备好I/O的文件描述符数目,包括所有三个set。如果提供了timeout,返回值可能是0;错误时返回-1,并且设置errno为下面几个值之一:
EBADF: 给某个set提供了无效文件描述符。
EINTR::等待时捕获到信号,可以重新发起调用。
EINVAL::参数n为负数,或者指定的timeout非法。
ENOMEM::不够可用内存来完成请求。

Poll



和select()不一样,poll()没有使用低效的三个基于位的文件描述符set,而是采用了一个单独的结构体pollfd数组,由fds指针指向这个组。pollfd结构体定义如下:


#include <sys/poll.h>

int poll (struct pollfd *fds, unsigned int nfds, int timeout);
struct pollfd {
    int fd; /* file descriptor */
    short events; /* requested events to watch */
    short revents; /* returned events witnessed */
};

每一个pollfd结构体指定了一个被监视的文件描述符,可以传递多个结构体,指示poll()监视多个文件描述符。每个结构体的events域是监视该文件描述符的事件掩码,由用户来设置这个域。revents域是文件描述符的操作结果事件掩码。内核在调用返回时设置这个域。events域中请求的任何事件都可能在revents域中返回。合法的事件如下:

POLLIN:有数据可读。
POLLRDNORM:有普通数据可读。
POLLRDBAND:有优先数据可读。
POLLPRI:有紧迫数据可读。
POLLOUT:写数据不会导致阻塞。
POLLWRNORM:写普通数据不会导致阻塞。
POLLWRBAND:写优先数据不会导致阻塞。
POLLMSG:SIGPOLL消息可用。

此外,revents域中还可能返回下列事件:
POLLER:指定的文件描述符发生错误。
POLLHUP:指定的文件描述符挂起事件。
POLLNVAL:指定的文件描述符非法。

这些事件在events域中无意义,因为它们在合适的时候总是会从revents中返回。使用poll()和select()不一样,你不需要显式地请求异常情况报告。

POLLIN | POLLPRI等价于select()的读事件,POLLOUT | POLLWRBAND等价于select()的写事件。POLLIN等价于POLLRDNORM | POLLRDBAND,而POLLOUT则等价于POLLWRNORM。
例如,要同时监视一个文件描述符是否可读和可写,我们可以设置events为POLLIN | POLLOUT。在poll返回时,我们可以检查revents中的标志,对应于文件描述符请求的events结构体。如果POLLIN事件被设置,则文件描述符可以被读取而不阻塞。如果POLLOUT被设置,则文件描述符可以写入而不导致阻塞。这些标志并不是互斥的:它们可能被同时设置,表示这个文件描述符的读取和写入操作都会正常返回而不阻塞。
timeout参数指定等待的毫秒数,无论I/O是否准备好,poll都会返回。timeout指定为负数值表示无限超时;timeout为0指示poll调用立即返回并列出准备好I/O的文件描述符,但并不等待其它的事件。这种情况下,poll()就像它的名字那样,一旦选举出来,立即返回。
返回值和错误代码
成功时,poll()返回结构体中revents域不为0的文件描述符个数;如果在超时前没有任何事件发生,poll()返回0;失败时,poll()返回-1,并设置errno为下列值之一:
EBADF:一个或多个结构体中指定的文件描述符无效。
EFAULT:fds指针指向的地址超出进程的地址空间。
EINTR:请求的事件之前产生一个信号,调用可以重新发起。
EINVAL:nfds参数超出PLIMIT_NOFILE值。
ENOMEM:可用内存不足,无法完成请求。

Epoll



Epoll的优点:
1.支持一个进程打开大数目的socket描述符(FD)
    select 最不能忍受的是一个进程所打开的FD是有一定限制的,由FD_SETSIZE设置,默认值是2048。对于那些需要支持的上万连接数目的IM服务器来说显然太少了。这时候你一是可以选择修改这个宏然后重新编译内核,不过资料也同时指出这样会带来网络效率的下降,二是可以选择多进程的解决方案(传统的 Apache方案),不过虽然linux上面创建进程的代价比较小,但仍旧是不可忽视的,加上进程间数据同步远比不上线程间同步的高效,所以也不是一种完美的方案。不过 epoll则没有这个限制,它所支持的FD上限是最大可以打开文件的数目,这个数字一般远大于2048,举个例子,在1GB内存的机器上大约是10万左右,具体数目可以cat /proc/sys/fs/file-max察看,一般来说这个数目和系统内存关系很大。

2.IO效率不随FD数目增加而线性下降
    传统的select/poll另一个致命弱点就是当你拥有一个很大的socket集合,不过由于网络延时,任一时间只有部分的socket是"活跃"的,但是select/poll每次调用都会线性扫描全部的集合,导致效率呈现线性下降。但是epoll不存在这个问题,它只会对"活跃"的socket进行操作---这是因为在内核实现中epoll是根据每个fd上面的callback函数实现的。那么,只有"活跃"的socket才会主动的去调用 callback函数,其他idle状态socket则不会,在这点上,epoll实现了一个"伪"AIO,因为这时候推动力在os内核。在一些 benchmark中,如果所有的socket基本上都是活跃的---比如一个高速LAN环境,epoll并不比select/poll有什么效率,相反,如果过多使用epoll_ctl,效率相比还有稍微的下降。但是一旦使用idle connections模拟WAN环境,epoll的效率就远在select/poll之上了。

3.使用mmap加速内核与用户空间的消息传递。
    这点实际上涉及到epoll的具体实现了。无论是select,poll还是epoll都需要内核把FD消息通知给用户空间,如何避免不必要的内存拷贝就很重要,在这点上,epoll是通过内核于用户空间mmap同一块内存实现的。而如果你想我一样从2.5内核就关注epoll的话,一定不会忘记手工 mmap这一步的。

Epoll简介:

在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。
相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。

epoll的接口非常简单,一共就三个函数:
1. int epoll_create(int size);
创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大。这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。

2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
epoll的事件注册函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件类型。第一个参数是epoll_create()[上面一个函数]的返回值,第二个参数表示动作,用三个宏来表示:
EPOLL_CTL_ADD:注册新的fd到epfd中;
EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个参数是需要监听的fd,第四个参数是告诉内核需要监听什么事,struct epoll_event结构如下:
struct epoll_event {
  __uint32_t events;  /* Epoll events */
  epoll_data_t data;  /* User data variable */
};

events可以是以下几个宏的集合:
EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
EPOLLOUT:表示对应的文件描述符可以写;
EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
EPOLLERR:表示对应的文件描述符发生错误;
EPOLLHUP:表示对应的文件描述符被挂断;
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里

3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
等待事件的产生,类似于select()调用。参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。

令人高兴的是,2.6内核的epoll比其2.5开发版本的/dev/epoll简洁了许多,所以,大部分情况下,强大的东西往往是简单的。唯一有点麻烦是epoll有2种工作方式:

LT和ET(水平触发和边缘触发)


  LT(level triggered)是缺省的工作方式,并且同时支持block和no-block socket.在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的,所以,这种模式编程出错误可能性要小一点。传统的select/poll都是这种模型的代表。

  ET (edge-triggered)是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了(比如,你在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致了一个EWOULDBLOCK 错误)。但是请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once),不过在TCP协议中,ET模式的加速效用仍需要更多的benchmark确认。

第二部分:Epoll的三个例子

epoll用到的所有函数都是在头文件sys/epoll.h中声明的,下面简要说明所用到的数据结构和函数:

所用到的数据结构



typedef union epoll_data
{
    void *ptr;
    int fd;
    __uint32_t u32;
    __uint64_t u64;
} epoll_data_t;

struct epoll_event
{
    __uint32_t events;      /* Epoll events */
    epoll_data_t data;      /* User data variable */
};

* This source code was highlighted by YcdoiT. ( style: Vs )

结构体epoll_event 被用于注册所感兴趣的事件和回传所发生待处理的事件,其中epoll_data 联合体用来保存触发事件的某个文件描述符相关的数据,例如一个client连接到服务器,服务器通过调用accept函数可以得到于这个client对应的socket文件描述符,可以把这文件描述符赋给epoll_data的fd字段以便后面的读写操作在这个文件描述符上进行。epoll_event 结构体的events字段是表示感兴趣的事件和被触发的事件可能的取值为:EPOLLIN :表示对应的文件描述符可以读;

EPOLLOUT:表示对应的文件描述符可以写;

EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);

EPOLLERR:表示对应的文件描述符发生错误;

EPOLLHUP:表示对应的文件描述符被挂断;

EPOLLET:表示对应的文件描述符有事件发生;

所用到的函数:

1、epoll_create函数

函数声明:int epoll_create(int size)

该函数生成一个epoll专用的文件描述符,其中的参数是指定生成描述符的最大范围(我觉得这个参数和select函数的第一个参数应该是类似的但是该怎么设置才好,我也不太清楚)。

2、epoll_ctl函数

函数声明:int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event)

该函数用于控制某个文件描述符上的事件,可以注册事件,修改事件,删除事件。

参数:epfd:由 epoll_create 生成的epoll专用的文件描述符;

op:要进行的操作例如注册事件,可能的取值:

EPOLL_CTL_ADD 注册;

EPOLL_CTL_MOD 修改;

EPOLL_CTL_DEL 删除

fd:关联的文件描述符;

event:指向epoll_event的指针;

如果调用成功返回0,不成功返回-1

3、epoll_wait函数

函数声明:int epoll_wait(int epfd,struct epoll_event * events,int maxevents,int timeout)

该函数用于轮询I/O事件的发生;

参数:

epfd:由epoll_create 生成的epoll专用的文件描述符;

epoll_event:用于回传代处理事件的数组;

maxevents:每次能处理的事件数;

timeout:等待I/O事件发生的超时值;

返回发生事件数。

例子1



#include <iostream>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>

#define MAXLINE 10
#define OPEN_MAX 100
#define LISTENQ 20
#define SERV_PORT 5555
#define INFTIM 1000

void setnonblocking(int sock)
{
    int opts;
    opts = fcntl(sock, F_GETFL);
    if(opts < 0)
    {
        perror("fcntl(sock,GETFL)");
        exit(1);
    }
    opts = opts | O_NONBLOCK;
    if(fcntl(sock, F_SETFL, opts) < 0)
    {
        perror("fcntl(sock,SETFL,opts)");
        exit(1);
    }
}

int main()
{
    int i, maxi, listenfd, connfd, sockfd, epfd, nfds;
    ssize_t n;
    char line[MAXLINE];
    socklen_t clilen;
    //声明epoll_event结构体的变量,ev用于注册事件,数组用于回传要处理的事件
    struct epoll_event ev, events[20];
    //生成用于处理accept的epoll专用的文件描述符
    epfd = epoll_create(256);

struct sockaddr_in clientaddr;
    struct sockaddr_in serveraddr;
    listenfd = socket(AF_INET, SOCK_STREAM, 0);
    //把socket设置为非阻塞方式
    setnonblocking(listenfd);
    //设置与要处理的事件相关的文件描述符
    ev.data.fd = listenfd;
    //设置要处理的事件类型
    ev.events = EPOLLIN | EPOLLET;
    //注册epoll事件
    epoll_ctl(epfd, EPOLL_CTL_ADD, listenfd, &ev);

bzero(&serveraddr, sizeof(serveraddr));
    serveraddr.sin_family = AF_INET;

char *local_addr = "200.200.200.204";
    inet_aton(local_addr, &(serveraddr.sin_addr)); //htons(SERV_PORT);
    serveraddr.sin_port = htons(SERV_PORT);
    bind(listenfd, (sockaddr *)&serveraddr, sizeof(serveraddr));
    listen(listenfd, LISTENQ);

maxi = 0;
    for ( ; ; )
    {
        //等待epoll事件的发生
        nfds = epoll_wait(epfd, events, 20, 500);
        //处理所发生的所有事件
        for(i = 0; i < nfds; ++i)
        {
            if(events[i].data.fd == listenfd)
            {

connfd = accept(listenfd, (sockaddr *)&clientaddr, &clilen);
                if(connfd < 0)
                {
                    perror("connfd<0");
                    exit(1);
                }
                setnonblocking(connfd);

char *str = inet_ntoa(clientaddr.sin_addr);
                std::cout << "connect from " < _u115 ? tr << std::endl;
                //设置用于读操作的文件描述符
                ev.data.fd = connfd;
                //设置用于注测的读操作事件
                ev.events = EPOLLIN | EPOLLET;
                //注册ev
                epoll_ctl(epfd, EPOLL_CTL_ADD, connfd, &ev);
            }
            else if(events[i].events & EPOLLIN)
            {
                if ( (sockfd = events[i].data.fd) < 0) continue;
                if ( (n = read(sockfd, line, MAXLINE)) < 0)
                {
                    if (errno == ECONNRESET)
                    {

close(sockfd);
                        events[i].data.fd = -1;
                    }
                    else
                        std::cout << "readline error" << std::endl;
                }
                else if (n == 0)
                {
                    close(sockfd);
                    events[i].data.fd = -1;
                }
                //设置用于写操作的文件描述符
                ev.data.fd = sockfd;
                //设置用于注测的写操作事件
                ev.events = EPOLLOUT | EPOLLET;
                //修改sockfd上要处理的事件为EPOLLOUT
                epoll_ctl(epfd, EPOLL_CTL_MOD, sockfd, &ev);
            }
            else if(events[i].events & EPOLLOUT)
            {
                sockfd = events[i].data.fd;
                write(sockfd, line, n);
                //设置用于读操作的文件描述符
                ev.data.fd = sockfd;
                //设置用于注测的读操作事件
                ev.events = EPOLLIN | EPOLLET;
                //修改sockfd上要处理的事件为EPOLIN
                epoll_ctl(epfd, EPOLL_CTL_MOD, sockfd, &ev);
            }

}

}
}

* This source code was highlighted by YcdoiT. ( style: Vs )

例子2



/*

*\ 服务器端的源代码

*/

#include <netinet/in.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <fcntl.h>
#include <iostream>
#include <signal.h>
#include <sys/epoll.h>

#define MAXFDS 256
#define EVENTS 100
#define PORT 8888

int epfd;
bool setNonBlock(int fd)
{
    int flags = fcntl(fd, F_GETFL, 0);
    flags |= O_NONBLOCK;
    if(-1 == fcntl(fd, F_SETFL, flags))
        return false;
    return true;
}

int main(int argc, char *argv[], char *evp[])
{
    int fd, nfds, confd;
    int on = 1;
    char *buffer[512];
    struct sockaddr_in saddr, caddr;
    struct epoll_event ev, events[EVENTS];

if(-1 == socket(AF_INET, SOCKSTREAM), 0)
    {
        std::cout << "创建套接字出错啦" << std::endl;
        return -1;
    }

struct sigaction sig;
    sigemptyset(&sig.sa_mask);
    sig_handler = SIG_IGN;
    sigaction(SIGPIPE, &N > sig, NULL);

epfd = epoll_create(MAXFDS);

setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));

memset(&saddr, 0, sizeof(saddr));
    saddr.sin_family = AF_INET;
    saddr.sin_port = htons((short)(PORT));
    saddr.sin_addr.s_addr = INADDR_ANY;
    if(-1 == bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)))
    {
        std::cout << "套接字不能绑定到服务器上" << std::endl;
        return -1;
    }

if(-1 == listen(fd, 32))
    {
        std::cout << "监听套接字的时候出错了" << std::endl;
        return -1;
    }

ev.data.fd = fd;
    ev.events = EPOLLIN;
    epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &ev);

while(true)
    {
        nfds = epoll_wait(epfd, &events, MAXFDS, 0);

for(int i = 0; i < nfds; ++ i)
        {
            if(fd == events[i].data.fd)
            {
                memset(&caddr, sizeof(caddr));
                cfd = accept(fd, (struct sockaddr *)&caddr, &sizeof(caddr));
                if(-1 == cfd)
                {
                    std::cout << "服务器接收套接字的时候出问题了" << std::endl;
                    break;
                }

setNonBlock(cfd);

ev.data.fd = cfd;
                ev.events = EPOLLIN;
                epoll_ctl(epfd, EPOLL_CTL_ADD, cfd, &ev);
            }
            else if(events[i].data.fd & EPOLLIN)
            {
                bzero(&buffer, sizeof(buffer));
                std::cout << "服务器端要读取客户端发过来的消息" << std::endl;
                ret = recv(events[i].data.fd, buffer, sizeof(buffer), 0);
                if(ret < 0)
                {
                    std::cout << "服务器收到的消息出错了" << endl;
                    return -1;
                }
                std::cout << "接收到的消息为:" << (char *) buffer << std::endl;
                ev.data.fd = events[i].data.fd;
                ev.events = EPOLLOUT;
                epoll_ctl(epfd, EPOLL_CTL_MOD, events[i].data.fd, &ev);
            }
            else if(events[i].data.fd & EPOLLOUT)
            {
                bzero(&buffer, sizeof(buffer));
                bcopy("The [email protected]: [email protected]", buffer, sizeof("The [email protected]: [email protected]"));
                ret = send(events[i].data.fd, buffer, strlen(buffer));
                if(ret < 0)
                {
                    std::cout << "服务器发送消息给客户端的时候出错啦" << std::endl;
                    return -1;
                }
                ev.data.fd = events[i].data.fd;
                epoll_ctl(epfd, EPOLL_CTL_DEL, ev.data.fd, &ev);
            }
        }
    }
    if(fd > 0)
    {
        shutdown(fd, SHUT_RDWR);
        close(fd);
    }
}

* This source code was highlighted by YcdoiT. ( style: Vs )


/*

*\ 客户端源代码

*/
#include <iostream>
#include <netinet/in.h>
#include <sys/types.h>
#include <sys/socket.h>

#define PORT 8888

int main(int argc, char *argv[], char *evp[])
{
    int fd;
    int on = 1;
    char *buffer[512];

struct sockaddr_in seraddr;
    memset(&seraddr, 0, sizeof(seraddr));

if((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
    {
        std::cout << "客户端创建套接字出错了" << std::endl;
        return -1;
    }

//如果用于多次测试,那么打开下面debug选项

#ifdef _Debug_ming
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
#endif

seraddr.sin_port = htons((short)(PORT));
    seraddr.sin_family = AF_INET;
    seraddr.sin_addr.s_addr = inet_addr("127.0.0.1");//设置自己的ip吧

//你也可以采用无阻塞连接,不过需要对连接的错误结果进行分析处理

if(TEMP_FAILURE_RETRY(connect(fd, (struct sockaddr *)&seraddr, sizeof(seraddr)) < 0))
    {
        std::cout << "连接错误了" << std::endl;
        return -1;
    }
    //下面就进行收发信息

bcopy("The [email protected]: [email protected]");
    send(fd, buffer, strlen(buffer), 0);
    bzero(&buffer, sizeof(buffer));
    recv(fd, buffer, sizeof(buffer), 0);
    exit(0);
}

* This source code was highlighted by YcdoiT. ( style: Vs )

例子3


一个使用epoll的服务器


#include <iostream>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>

#define MAXLINE 1024
#define OPEN_MAX 100
#define LISTENQ 20
#define SERV_PORT 5555
#define INFTIM 1000

//线程池任务队列结构体
struct task
{
    int fd;            //需要读写的文件描述符
    struct task *next; //下一个任务
};
//用于保存向客户端发送一次消息所需的相关数据
struct user_data
{
    int fd;
    unsigned int n_size;
    char line[MAXLINE];
};
//线程的任务函数
void *readtask(void *args);
void *writetask(void *args);
//声明epoll_event结构体的变量,ev用于注册事件,数组用于回传要处理的事件
struct epoll_event ev, events[20];
int epfd;
pthread_mutex_t mutex;
pthread_cond_t cond1;
struct task *readhead = NULL, *readtail = NULL, *writehead = NULL;
void setnonblocking(int sock)
{
    int opts;
    opts = fcntl(sock, F_GETFL);
    if(opts < 0)
    {
        perror("fcntl(sock,GETFL)");
        exit(1);
    }
    opts = opts | O_NONBLOCK;
    if(fcntl(sock, F_SETFL, opts) < 0)
    {
        perror("fcntl(sock,SETFL,opts)");
        exit(1);
    }
}
int main()
{
    int i, maxi, listenfd, connfd, sockfd, nfds;
    pthread_t tid1, tid2;
    struct task *new_task = NULL;
    struct user_data *rdata = NULL;
    socklen_t clilen;
    pthread_mutex_init(&mutex, NULL);
    pthread_cond_init(&cond1, NULL);
    //初始化用于读线程池的线程,开启两个线程来完成任务,两个线程会互斥地访问任务链表
    pthread_create(&tid1, NULL, readtask, NULL);
    pthread_create(&tid2, NULL, readtask, NULL);
    //生成用于处理accept的epoll专用的文件描述符
    epfd = epoll_create(256);
    struct sockaddr_in clientaddr;
    struct sockaddr_in serveraddr;
    listenfd = socket(AF_INET, SOCK_STREAM, 0);
    //把socket设置为非阻塞方式
    setnonblocking(listenfd);
    //设置与要处理的事件相关的文件描述符
    ev.data.fd = listenfd;
    //设置要处理的事件类型,当描述符可读时出发,出发方式为ET模式
    ev.events = EPOLLIN | EPOLLET;
    //注册epoll事件
    epoll_ctl(epfd, EPOLL_CTL_ADD, listenfd, &ev);
    bzero(&serveraddr, sizeof(serveraddr));
    serveraddr.sin_family = AF_INET;
    const char *local_addr = "127.0.0.1";
    inet_aton(local_addr, &(serveraddr.sin_addr)); //htons(SERV_PORT);
    serveraddr.sin_port = htons(SERV_PORT);
    bind(listenfd, (sockaddr *)&serveraddr, sizeof(serveraddr));
    //开始监听
    listen(listenfd, LISTENQ);
    maxi = 0;
    for ( ; ; )
    {
        //等待epoll事件的发生
        nfds = epoll_wait(epfd, events, 20, 500);
        //处理所发生的所有事件
        for(i = 0; i < nfds; ++i)
        {
            if(events[i].data.fd == listenfd)
            {
                connfd = accept(listenfd, (sockaddr *)&clientaddr, &clilen);
                if(connfd < 0)
                {
                    perror("connfd<0");
                    exit(1);
                }
                setnonblocking(connfd);
                const char *str = inet_ntoa(clientaddr.sin_addr);
                std::cout << "connec_ from >> " << str << std::endl;
                //设置用于读操作的文件描述符
                ev.data.fd = connfd;
                //设置用于注测的读操作事件
                ev.events = EPOLLIN | EPOLLET;
                //注册ev
                epoll_ctl(epfd, EPOLL_CTL_ADD, connfd, &ev);
            }
            else if(events[i].events & EPOLLIN)
            {
                printf("reading!\n");
                if ( (sockfd = events[i].data.fd) < 0) continue;
                new_task = new task();
                new_task->fd = sockfd;
                new_task->next = NULL;
                //添加新的读任务
                pthread_mutex_lock(&mutex);
                if(readhead == NULL)
                {
                    readhead = new_task;
                    readtail = new_task;
                }
                else
                {
                    readtail->next = new_task;
                    readtail = new_task;
                }
                //唤醒所有等待cond1条件的线程
                pthread_cond_broadcast(&cond1);
                pthread_mutex_unlock(&mutex);
            }
            else if(events[i].events & EPOLLOUT)
            {
                rdata = (struct user_data *)events[i].data.ptr;
                sockfd = rdata->fd;
                write(sockfd, rdata->line, rdata->n_size);
                delete rdata;
                //设置用于读操作的文件描述符
                ev.data.fd = sockfd;
                //设置用于注测的读操作事件
                ev.events = EPOLLIN | EPOLLET;
                //修改sockfd上要处理的事件为EPOLIN
                epoll_ctl(epfd, EPOLL_CTL_MOD, sockfd, &ev);
            }
        }
    }
}
void *readtask(void *args)
{
    int fd = -1;
    unsigned int n;
    //用于把读出来的数据传递出去
    struct user_data *data = NULL;
    while(1)
    {
        //互斥访问任务队列
        pthread_mutex_lock(&mutex);
        //等待到任务队列不为空
        while(readhead == NULL)
            pthread_cond_wait(&cond1, &mutex); //线程阻塞,释放互斥锁,当等待的条件等到满足时,它会再次获得互斥锁
        fd = readhead->fd;
        //从任务队列取出一个读任务
        struct task *tmp = readhead;
        readhead = readhead->next;
        delete tmp;
        pthread_mutex_unlock(&mutex);
        data = new user_data();
        data->fd = fd;
        if ( (n = read(fd, data->line, MAXLINE)) < 0)
        {
            if (errno == ECONNRESET)
                close(fd);
            else
                std::cout << "readline error" << std::endl;
            if(data != NULL) delete data;
        }
        else if (n == 0)
        {
            //客户端关闭了,其对应的连接套接字可能也被标记为EPOLLIN,然后服务器去读这个套接字
            //结果发现读出来的内容为0,就知道客户端关闭了。
            close(fd);
            printf("Client close connect!\n");
            if(data != NULL) delete data;
        }
        else
        {
            std::cout << "read from client: " << data->line << std::endl;
            data->n_size = n;
            //设置需要传递出去的数据
            ev.data.ptr = data;
            //设置用于注测的写操作事件
            ev.events = EPOLLOUT | EPOLLET;
            //修改sockfd上要处理的事件为EPOLLOUT
            epoll_ctl(epfd, EPOLL_CTL_MOD, fd, &ev);
        }
    }
}

* This source code was highlighted by YcdoiT. ( style: Vs )

=========================================================

给出一个简单的客户端吧,从《Linux编程技术详解》书中拷贝而来。


#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <netdb.h>
#include <unistd.h>

int main(int argc, char *argv[])
{
    int connect_fd;
    int ret;
    char snd_buf[1024];
    int i;
    int port;
    int len;

static struct sockaddr_in srv_addr;
    if(argc != 3)
    {
        printf("Usage: %s server_ip_address port\n", argv[0]);
        return 1;
    }
    port = atoi(argv[2]);
    connect_fd = socket(PF_INET, SOCK_STREAM, 0);
    if(connect_fd < 0)
    {
        perror("cannot create communication socket");
        return 1;
    }
    memset(&srv_addr, 0, sizeof(srv_addr));
    srv_addr.sin_family = AF_INET;
    srv_addr.sin_addr.s_addr = inet_addr(argv[1]);
    srv_addr.sin_port = htons(port);
    ret = connect(connect_fd, (struct sockaddr *)&srv_addr, sizeof(srv_addr));
    if(ret == -1)
    {
        perror("cannot connect to the server");
        close(connect_fd);
        return 1;
    }
    memset(snd_buf, 0, 1024);
    while(1)
    {
        write(STDOUT_FILENO, "input message:", 14);
        bzero(snd_buf, 1024);
        len = read(STDIN_FILENO, snd_buf, 1024);
        if(snd_buf[0] == ‘@‘)
            break;
        if(len > 0)
            write(connect_fd, snd_buf, len);
        len = read(connect_fd, snd_buf, len);
        if(len > 0)
            printf("Message from server: %s\n", snd_buf);
    }
    close(connect_fd);
    return 0;
}

时间: 2025-01-07 00:07:11

epoll 简单介绍及例子的相关文章

python的列表,元组和字典简单介绍

引 入 java                                   python 存取多个值:数组或list集合 ------------------------> 列表,元组 key-value格式:    Map        ------------------------>    字典 自己学习发现,java跟python这两门面向对象语言在数据类型的定义上,很多思想都是互通的,这里不说java,简单介绍一下python的列表,元组和字典. 一.列表 List: 最通

Zookeeper简单介绍

转自:ZooKeeper学习第一期---Zookeeper简单介绍 一.分布式协调技术 在给大家介绍ZooKeeper之前先来给大家介绍一种技术--分布式协调技术.那么什么是分布式协调技术?那么我来告诉大家,其实分布式协调技术 主要用来解决分布式环境当中多个进程之间的同步控制,让他们有序的去访问某种临界资源,防止造成"脏数据"的后果.这时,有人可能会说这个简单,写一个调 度算法就轻松解决了.说这句话的人,可能对分布式系统不是很了解,所以才会出现这种误解.如果这些进程全部是跑在一台机上的

七、变量与常量的简单介绍

七.变量与常量的简单介绍 本文将介绍VB语言中的变量与常量. 基本概念 首先大家要明白变量和常量是很重要的东西,因为他们储存着程序运行中的各种数据.顾名思义,变量就是可以变的量,而常量就是不变的,这个概念和数学上的有点接近. 接下来我简单讲讲这两个重要的东西:计算机程序在不运行的时候,程序文件保存在硬盘上,当用户运行程序之后,系统就会把程序文件装进计算机的内存里面,无论在硬盘中还是内存中,程序数据都是以二进制的形式保存着的.当程序在运行的时候,可以把计算机的内存理解为一个超级大的棋盘,每个格子都

UITabBarController简单介绍

转自:http://www.cnblogs.com/wendingding/p/3775488.html 一.简单介绍 UITabBarController和UINavigationController类似,UITabBarController也可以轻松地管理多个控制器,轻松完成控制器之间的切换,典型的例子就是QQ.微信等应?. 二.UITabBarController的使用 1.使用步骤: (1)初始化UITabBarController (2)设置UIWindow的rootViewContr

iOS开发UI篇—UITabBarController简单介绍

一.简单介绍 UITabBarController和UINavigationController类似,UITabBarController也可以轻松地管理多个控制器,轻松完成控制器之间的切换,典型的例子就是QQ.微信等应?. 二.UITabBarController的使用 1.使用步骤: (1)初始化UITabBarController (2)设置UIWindow的rootViewController为UITabBarController (3)创建相应的子控制器(viewcontroller)

epoll使用介绍

一.epoll原理 一个socket对应一个数据流,通过I/O操作中的read从流中读入数据,write向流中写入数据.当read时,socket流中没有数据的话,read阻塞,线程睡眠,CPU开始做其他的任务,流中有数据可读时,read返回. 在阻塞IO模式下,一个线程只能处理一个IO事件.如果处理多个事件,需要多线程或多进程,但是效率比较低. 1.如果采用非阻塞方式,需要不断轮训所有的流,假设共有N个socket流streams[N], 如下: // busy poll while True

iOS开发——图形与动画篇OC篇&amp; POP简单介绍及使用

POP简单介绍及使用 前言 动画在APP开发过程中 大家多多少少都会接触到 而且随着ios7的扁平化风格启用之后 越来越多的APP开始尝试加入各种绚丽的动画交互效果以增加APP的用户体验(当然 还是以国外的APP居多) 有过相关开发经验的同学肯定知道在iOS中 动画相关的部分都是基于Core Animation 但是今天我们不讨论Core Animation 今天的主角是POP -来自于Facebook的动画引擎(其实我不喜欢把POP定义为动画引擎 我愿意称它为函数发生器) 介绍 官方地址 ht

Maven实战之初识MavenMaven的简单介绍

Maven实战之初识MavenMaven的简单介绍 作用:Maven主要用于项目的构建,管理项目的依赖以及项目的信息(自动化构建.编译.单元测试.生成文档.打包.部署) 优势:相对于Ant.Make等,Maven抽象构建过程,提供构建任务的实现,自动化构建,有效地提高了开发效率,使开发人员可以集中精力在主要的开发任务上.而且Maven是跨平台工具,意味着在主流操作系统中,Maven都提供了对应的技术支持 使用注意:需要在JDK1.4及以上版本使用 Maven的安装下载地址:Maven下载地址,选

iOS开发——网络OC篇&amp;网络爬虫简单介绍

网络爬虫简单介绍 先来看看网络爬虫的基本原理: 一个通用的网络爬虫的框架如图所示: 网络爬虫的基本工作流程如下: 1.首先选取一部分精心挑选的种子URL: 2.将这些URL放入待抓取URL队列: 3.从待抓取URL队列中取出待抓取在URL,解析DNS,并且得到主机的ip,并将URL对应的网页下载下来,存储进已下载网页库中.此外,将这些URL放进已抓取URL队列. 4.分析已抓取URL队列中的URL,分析其中的其他URL,并且将URL放入待抓取URL队列,从而进入下一个循环. 以下内容均为本人个人