机器学习_logistic回归和梯度下降

原文:http://blog.csdn.net/dongtingzhizi/article/details/15962797

 Logistic回归总结

PDF下载地址:http://download.csdn.net/detail/lewsn2008/6547463

1.引言

看了Stanford的Andrew Ng老师的机器学习公开课中关于Logistic Regression的讲解,然后又看了《机器学习实战》中的LogisticRegression部分,写下此篇学习笔记总结一下。

首先说一下我的感受,《机器学习实战》一书在介绍原理的同时将全部的算法用源代码实现,非常具有操作性,可以加深对算法的理解,但是美中不足的是在原理上介绍的比较粗略,很多细节没有具体介绍。所以,对于没有基础的朋友(包括我)某些地方可能看的一头雾水,需要查阅相关资料进行了解。所以说,该书还是比较适合有基础的朋友。

本文主要介绍以下三个方面的内容:

(1)Logistic Regression的基本原理,分布在第二章中;

(2)Logistic Regression的具体过程,包括:选取预测函数,求解Cost函数和J(θ),梯度下降法求J(θ)的最小值,以及递归下降过程的向量化(vectorization),分布在第三章中;

(3)对《机器学习实战》中给出的实现代码进行了分析,对阅读该书LogisticRegression部分遇到的疑惑进行了解释。没有基础的朋友在阅读该书的Logistic Regression部分时可能会觉得一头雾水,书中给出的代码很简单,但是怎么也跟书中介绍的理论联系不起来。也会有很多的疑问,比如:一般都是用梯度下降法求损失函数的最小值,为何这里用梯度上升法呢?书中说用梯度上升发,为何代码实现时没见到求梯度的代码呢?这些问题在第三章和第四章中都会得到解答。

文中参考或引用内容的出处列在最后的“参考文献”中。文中所阐述的内容仅仅是我个人的理解,如有错误或疏漏,欢迎大家批评指正。下面进入正题。

2. 基本原理

Logistic Regression和Linear Regression的原理是相似的,按照我自己的理解,可以简单的描述为这样的过程:

(1)找一个合适的预测函数(Andrew Ng的公开课中称为hypothesis),一般表示为h函数,该函数就是我们需要找的分类函数,它用来预测输入数据的判断结果。这个过程时非常关键的,需要对数据有一定的了解或分析,知道或者猜测预测函数的“大概”形式,比如是线性函数还是非线性函数。

(2)构造一个Cost函数(损失函数),该函数表示预测的输出(h)与训练数据类别(y)之间的偏差,可以是二者之间的差(h-y)或者是其他的形式。综合考虑所有训练数据的“损失”,将Cost求和或者求平均,记为J(θ)函数,表示所有训练数据预测值与实际类别的偏差。

(3)显然,J(θ)函数的值越小表示预测函数越准确(即h函数越准确),所以这一步需要做的是找到J(θ)函数的最小值。找函数的最小值有不同的方法,Logistic Regression实现时有的是梯度下降法(Gradient Descent)。

3. 具体过程

3.1  构造预测函数

Logistic Regression虽然名字里带“回归”,但是它实际上是一种分类方法,用于两分类问题(即输出只有两种)。根据第二章中的步骤,需要先找到一个预测函数(h),显然,该函数的输出必须是两个值(分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:

对应的函数图像是一个取值在0和1之间的S型曲线(图1)。

图1

接下来需要确定数据划分的边界类型,对于图2和图3中的两种数据分布,显然图2需要一个线性的边界,而图3需要一个非线性的边界。接下来我们只讨论线性边界的情况。

图2

图3

对于线性边界的情况,边界形式如下:

构造预测函数为:

hθ(x)函数的值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:

3.2  构造Cost函数

Andrew Ng在课程中直接给出了Cost函数及J(θ)函数如式(5)和(6),但是并没有给出具体的解释,只是说明了这个函数来衡量h函数预测的好坏是合理的。

实际上这里的Cost函数和J(θ)函数是基于最大似然估计推导得到的。下面详细说明推导的过程。(4)式综合起来可以写成:

取似然函数为:

对数似然函数为:

最大似然估计就是要求得使l(θ)取最大值时的θ,其实这里可以使用梯度上升法求解,求得的θ就是要求的最佳参数。但是,在Andrew Ng的课程中将J(θ)取为(6)式,即:

因为乘了一个负的系数-1/m,所以J(θ)取最小值时的θ为要求的最佳参数。

3.3  梯度下降法求J(θ)的最小值

J(θ)的最小值可以使用梯度下降法,根据梯度下降法可得θ的更新过程:

式中为α学习步长,下面来求偏导:

上式求解过程中用到如下的公式:

因此,(11)式的更新过程可以写成:

因为式中α本来为一常量,所以1/m一般将省略,所以最终的θ更新过程为:

另外,补充一下,3.2节中提到求得l(θ)取最大值时的θ也是一样的,用梯度上升法求(9)式的最大值,可得:

观察上式发现跟(14)是一样的,所以,采用梯度上升发和梯度下降法是完全一样的,这也是《机器学习实战》中采用梯度上升法的原因。

3.4  梯度下降过程向量化

关于θ更新过程的vectorization,Andrew Ng的课程中只是一带而过,没有具体的讲解。

《机器学习实战》连Cost函数及求梯度等都没有说明,所以更不可能说明vectorization了。但是,其中给出的实现代码确是实现了vectorization的,图4所示代码的32行中weights(也就是θ)的更新只用了一行代码,直接通过矩阵或者向量计算更新,没有用for循环,说明确实实现了vectorization,具体代码下一章分析。

文献[3]中也提到了vectorization,但是也是比较粗略,很简单的给出vectorization的结果为:

且不论该更新公式正确与否,这里的Σ(...)是一个求和的过程,显然需要一个for语句循环m次,所以根本没有完全的实现vectorization,不像《机器学习实战》的代码中一条语句就可以完成θ的更新。

下面说明一下我理解《机器学习实战》中代码实现的vectorization过程。

约定训练数据的矩阵形式如下,x的每一行为一条训练样本,而每一列为不同的特称取值:

约定待求的参数θ的矩阵形式为:

先求x.θ并记为A

hθ(x)-y并记为E

g(A)的参数A为一列向量,所以实现g函数时要支持列向量作为参数,并返回列向量。由上式可知hθ(x)-y可以由g(A)-y一次计算求得。

再来看一下(15)式的θ更新过程,当j=0时:

同样的可以写出θj

综合起来就是:

综上所述,vectorization后θ更新的步骤如下:

(1)求A=x.θ

(2)求E=g(A)-y

(3)求θ:=θ-α.x‘.E,x‘表示矩阵x的转置。

也可以综合起来写成:

前面已经提到过:1/m是可以省略的。

4. 代码分析

图4中是《机器学习实战》中给出的部分实现代码。

图4

sigmoid函数就是前文中的g(z)函数,参数inX可以是向量,因为程序中使用了Python的numpy。

gradAscent函数是梯度上升的实现函数,参数dataMatin和classLabels为训练数据,23和24行对训练数据做了处理,转换成numpy的矩阵类型,同时将横向量的classlabels转换成列向量labelMat,此时的dataMatrix和labelMat就是(18)式中的xy。alpha为学习步长,maxCycles为迭代次数。weights为n维(等于x的列数)列向量,就是(19)式中的θ

29行的for循环将更新θ的过程迭代maxCycles次,每循环一次更新一次。对比3.4节最后总结的向量化的θ更新步骤,30行相当于求了A=x.θg(A),31行相当于求了E=g(A)-y,32行相当于求θ:=θ-α.x‘.E。所以这三行代码实际上与向量化的θ更新步骤是完全一致的。

总结一下,从上面代码分析可以看出,虽然只有十多行的代码,但是里面却隐含了太多的细节,如果没有相关基础确实是非常难以理解的。相信完整的阅读了本文,就应该没有问题了!^_^。

【参考文献】

[1]《机器学习实战》——【美】Peter Harington
[2] Stanford机器学习公开课(https://www.coursera.org/course/ml
[3] http://blog.csdn.net/abcjennifer/article/details/7716281
[4] http://www.cnblogs.com/tornadomeet/p/3395593.html
[5] http://blog.csdn.net/moodytong/article/details/9731283
[6] http://blog.csdn.net/jackie_zhu/article/details/8895270

时间: 2024-10-23 23:59:19

机器学习_logistic回归和梯度下降的相关文章

机器学习-监督学习应用:梯度下降

回归与梯度下降: 回归在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如locally weighted回归,logistic回归,等等,这个将在后面去讲. 用一个很简单的例子来说明回归,这个例子来自很多的地方,也在很多的open source的软件中看到,比如说weka.大概就是,做一个房屋价值的评估系统,一个房屋的价值来自很多地方,比如说面积.房间的数量(几室几厅).地 段.朝向等等

回归、梯度下降

回归(regression).梯度下降(gradient descent) 发表于332 天前 ? 技术, 科研 ? 评论数 3 ? 被围观 1152 次+ 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇关于贝叶斯概率论的数学,最近时间比较紧,coding的任务比较重,不过还是抽空看了一些机器学习的书和视频,其中很推荐两个:一个是 stanfo

回归和梯度下降

回归与梯度下降: 回归在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如locally weighted回归,logistic回归,等等,这个将在后面去讲. 用一个很简单的例子来说明回归,这个例子来自很多的地方,也在很多的open source的软件中看到,比如说weka.大概就是,做一个房屋价值的评估系统,一个房屋的价值来自很多地方,比如说面积.房间的数量(几室几厅).地段.朝向等等,

机器学习算法 --- 逻辑回归及梯度下降

一.逻辑回归简介 logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域. logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处. 其公式如下: 其图像如下: 我们通过观察上面的图像可以发现,逻辑回归的值域为(0, 1),当输入为0时,其输出为0.5:当输入小于0,并且越来越小时,其输出越来越接近于0:相反的,当其输入大于0,并且越来越大时,其输出越来

逻辑回归和梯度下降简单应用案例

实例: 我们将建立一个逻辑回归模型来预测一个学生是否被大学录取. 假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会. 你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集. 对于每一个培训例子,你有两个考试的申请人的分数和录取决定. 为了做到这一点,我们将建立一个分类模型,根据考试成绩估计入学概率. data.txt: 34.62365962451697,78.0246928153624,0 30.28671076822607,43.89499752400101

斯坦福大学机器学习课程笔记: 逻辑回归以及梯度下降

机器学习中最小二乘与梯度下降发的区别

http://www.zhihu.com/question/20822481 知乎用户,非文, 非理 Spirit_Dongdong.Wildog.mt Practices 等人赞同 同意 @张子权 的说法, 稍微再补充一下. 看问题估计, 题主可能是在学 machine learning 的东西, 所以才会有此问题. 但正如其他人指出的, 其实两种方法并不太具有可比性. 不过我当时在学的时候也有类似的问题. 当时我的问题是, 最小二乘法的矩阵解法和梯度下降法的区别在哪里? 我估摸着题主可能是想

机器学习(三)梯度下降与拟牛顿

这节课的推导真心hold不住了.按照自己的理解记下仅看明白的东西吧.或许还有第二遍.第三遍整理呢. 主要讲了两个问题: 学习率α如何确定? 使用固定的学习率还是变化的学习率? 学习率设置为多大比较好? 下降的方向如何处理,除了梯度方向,有没有其他方向? 可行方向和梯度方向有何关系? 先上结论: 使用固定的学习率还是变化的学习率? 使用变化的学习率好.学习率的确定可以这样:在参数迭代的开始阶段,由于与最优值差距较大,可以使用较大的学习率:在迭代后期,使用较小的学习率增加稳定性和精度. 学习率设置为

【吴恩达机器学习】学习笔记——梯度下降

梯度下降算法能够帮助我们快速得到代价函数的最小值 算法思路: 以某一参数为起始点 寻找下一个参数使得代价函数的值减小,直到得到局部最小值 梯度下降算法: 重复下式直至收敛,其中α为学习速率,表示找到局部最小值的速率 并且各参数θ0,...,θn必须同时更新,即所有的θj值全部都计算得到新值之后才将参数值代入到代价函数中 数学原理:沿梯度方向,函数变化率/方向导数最大 原文地址:https://www.cnblogs.com/JJJanepp/p/8454599.html