掌握这套大数据开发学习路线,从小白到精通没有问题!

很多人都知道大数据很火,就业很好,薪资很高,想往大数据方向发展。但该学哪些技术,学习路线是什么样的呢?用不用参加大数据培训呢?如果自己很迷茫。关注作者:需要更好的学习大数据,可以加我QQ群

首先先问自己几个问题,你的专业是什么,你擅长什么,对于计算机/软件,你的兴趣是什么?是计算机专业,对操作系统、硬件、网络、服务器感兴趣?是软件专业,对软件开发、编程、写代码感兴趣?还是数学、统计学专业,对数据和数字特别感兴趣。

其实这就是想告诉你的大数据的三个发展方向,平台搭建/优化/运维/监控、大数据开发/设计/架构、数据分析/挖掘。请不要问我哪个容易,因为挣前都不容易。虽然不容易,为了以后能过上有房有车的生活,混进中产阶级的圈子还得努力啊,那么怎么科学的来学习呢?零基础到项目实战,欢迎加入722680258

第一阶段:Linux+handoop分布式架构计算处理模块

学习不是一个人闭门造车的事,需要和大家多学习交流,获得指导,才能成长的快。

第二阶段 Storm实时计算处理模块

第三阶段 Spark内存处理计算模块

扎实掌握以上阶段的内容,后面就要多进行大数据&离线项目实战了,大数据开源项目的实操了,等到这个阶段了,我想你就可以自信大胆去面对面试官了,开始你的中产阶级的生活了。

加油吧,人这一生如果都是平平淡淡没有追求,不管是物质还是精神的追求,那这一生枉活一世。

原文地址:http://blog.51cto.com/13610853/2156969

时间: 2024-10-10 23:56:54

掌握这套大数据开发学习路线,从小白到精通没有问题!的相关文章

大数据开发学习路线整理

参考博客:做了五年大数据开发工程师总结的的大数据学习路线 大数据的4V特征: 1.        数据量大,TB->PB 2.        数据类型繁多,结构化.非结构化文本.日志.视频.图片.地理位置等: 3.        商业价值高,但是这种价值需要在海量数据之上,通过数据分析与机器学习更快速的挖掘出来: 4.        处理时效性高,海量数据的处理需求不再局限在离线计算当中. 常见的大数据的开源框架: l  文件存储:Hadoop HDFS.Tachyon.KFS l  离线计算:

大数据最佳学习路线总结

一,题记 要说当下IT行业什么最火?ABC无出其右.所谓ABC者,AI + Big Data + Cloud也,即人工智能.大数据和云计算(云平台).每个领域目前都有行业领袖在引领前行,今天我们来讨论下大数据Big Data这个方向. 二,大数据里面的角色 角色一:大数据工程 大数据工程需要解决数据的定义.收集.计算与保存的工作,因此大数据工程师们在设计和部署这样的系统时首要考虑的是数据高可用的问题,即大数据工程系统需要实时地为下游业务系统或分析系统提供数据服务: 角色二:大数据分析 大数据分析

2018年最新Hadoop大数据开发学习路线图

Hadoop发展到今天家族产品已经非常丰富,能够满足不同场景的大数据处理需求.作为目前主流的大数据处理技术,市场上很多公司的大数据业务都是基于Hadoop开展,而且对很多场景已经具有非常成熟的解决方案. 作为开发人员掌握Hadoop及其生态内框架的开发技术,就是进入大数据领域的必经之路. 下面详细介绍一下,学习Hadoop开发技术的路线图. Hadoop本身是用java开发的,所以对java的支持性非常好,但也可以使用其他语言. 下面的技术路线侧重数据挖掘方向,因为Python开发效率较高所以我

大数据开发学习步骤

经常有初学者 问我,自己想往大数据方向发展,该学哪些技术,学习路线是什么样的,觉得大数据很火,就业很好,薪资很高.如果自己很迷茫,为了这些原因想往大数据方向发展,也可以,那么我就想问一下,你的专业是什么,对于计算机/软件,你的兴趣是什么?是计算机专业,对操作系统.硬件.网络.服务器感兴趣?是软件专业,对软件开发.编程.写代码感兴趣?还是数学.统计学专业,对数据和数字特别感兴趣. 其实这就是想告诉你的大数据的三个发展方向,平台搭建/优化/运维/监控.大数据开发/设计/架构.数据分析/挖掘.请不要问

零基础大数据新手学习路线教程

大数据-数据挖掘,越来越火,90%的企业都在运用或者都想要利用大数据为其带来更便利的服务,从而大数据高端软件类人才可谓供不应求. 如何学好大数据? 第一阶段:大数据新手入门系统教程Java+MySQL+关系型数据库+阿里巴巴<码出高效>编码规约 知识点 一.Java基础入门:Java编程入门:Java编程初体验,Java运行机制; Java语法基础:Java程序的组织形式与命名规则,变量类型和定义,表达式和运算符; 程序的流程结构:分支结构,循环结构;函授:函数的定义,函数调用,函数递归定义和

大数据入门学习路线分享,请大家收下

大数据的学习技术点Hadoop核心(1) 分布式存储基石:HDFSHDFS简介 入门演示 构成及工作原理解析:数据块,NameNode, DataNode.数据写入与读取过程.数据复制.HA方案.文件类型. HDFS常用设置 Java API代码演示(2) 分布式计算基础:MapReduceMapReduce简介.编程模型.Java API 介绍.编程案例介绍.MapReduce调优(3) Hadoop集群资源管家:YARNYARN基本架构 资源调度过程 调度算法 YARN上的计算框架离线计算(

大数据经典学习路线(及供参考)

http://blog.csdn.net/yuexianchang/article/details/52468291 1.Linux基础和分布式集群技术 学完此阶段可掌握的核心能力: 熟练使用linux,熟练安装Linux上的软件,了解熟悉负载均衡.高可靠等集群相关概念,搭建互联网高并发.高可靠的服务架构: 学完此阶段可解决的现实问题: 搭建负载均衡.高可靠的服务器集群,可以增大网站的并发访问量,保证服务不间断地对外服务: 学完此阶段可拥有的市场价值: 具备初级程序员必要具备的Linux服务器运

大数据技术学习路线,该怎么学?

如果你看完有信心能坚持学习的话,那就当下开始行动吧! 一.大数据技术基础 1.linux操作基础 linux系统简介与安装linux常用命令–文件操作linux常用命令–用户管理与权限linux常用命令–系统管理linux常用命令–免密登陆配置与网络管理linux上常用软件安装linux本地yum源配置及yum软件安装linux防火墙配置linux高级文本处理命令cut.sed.awklinux定时任务crontab2.shell编程 shell编程–基本语法shell编程–流程控制shell编

Hadoop大数据开发学习路线图阶段一

Hadoop发展到今天家族产品已经非常丰富,能够满足不同场景的大数据处理需求.作为目前主流的大数据处理技术,市场上很多公司的大数据业务都是基于Hadoop开展,而且对很多场景已经具有非常成熟的解决方案. 作为开发人员掌握Hadoop及其生态内框架的开发技术,就是进入大数据领域的必经之路. 下面详细介绍一下,学习Hadoop开发技术的路线图. Hadoop本身是用java开发的,所以对java的支持性非常好,但也可以使用其他语言. 下面的技术路线侧重数据挖掘方向,因为Python开发效率较高所以我