Python中的Numpy入门教程

1、Numpy是什么

很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。如果接触过matlab、scilab,那么numpy很好入手。 在以下的代码示例中,总是先导入了numpy:

代码如下:

>>> import numpy as np
>>> print np.version.version
1.6.2

2、多维数组

多维数组的类型是:numpy.ndarray。

使用numpy.array方法

以list或tuple变量为参数产生一维数组:

代码如下:

>>> print np.array([1,2,3,4])
[1 2 3 4]
>>> print np.array((1.2,2,3,4))
[ 1.2  2.   3.   4. ]
>>> print type(np.array((1.2,2,3,4)))
<type ‘numpy.ndarray‘>

以list或tuple变量为元素产生二维数组:

代码如下:

>>> print np.array([[1,2],[3,4]])
[[1 2]
 [3 4]]

生成数组的时候,可以指定数据类型,例如numpy.int32, numpy.int16, and numpy.float64等:

代码如下:

>>> print np.array((1.2,2,3,4), dtype=np.int32)
[1 2 3 4]

使用numpy.arange方法

代码如下:

>>> print np.arange(15)
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]
>>> print type(np.arange(15))
<type ‘numpy.ndarray‘>
>>> print np.arange(15).reshape(3,5)
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]]
>>> print type(np.arange(15).reshape(3,5))
<type ‘numpy.ndarray‘>

使用numpy.linspace方法

例如,在从1到3中产生9个数:

代码如下:

>>> print np.linspace(1,3,9)
[ 1.    1.25  1.5   1.75  2.    2.25  2.5   2.75  3.  ]

使用numpy.zeros,numpy.ones,numpy.eye等方法可以构造特定的矩阵

例如:

代码如下:

>>> print np.zeros((3,4))
[[ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]]
>>> print np.ones((3,4))
[[ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]]
>>> print np.eye(3)
[[ 1.  0.  0.]
 [ 0.  1.  0.]
 [ 0.  0.  1.]]

创建一个三维数组:

代码如下:

>>> print np.zeros((2,2,2))
[[[ 0.  0.]
  [ 0.  0.]]

[[ 0.  0.]
  [ 0.  0.]]]

获取数组的属性:

代码如下:

>>> a = np.zeros((2,2,2))
>>> print a.ndim   #数组的维数
3
>>> print a.shape  #数组每一维的大小
(2, 2, 2)
>>> print a.size   #数组的元素数
8
>>> print a.dtype  #元素类型
float64
>>> print a.itemsize  #每个元素所占的字节数
8

数组索引,切片,赋值

示例:

代码如下:

>>> a = np.array( [[2,3,4],[5,6,7]] )
>>> print a
[[2 3 4]
 [5 6 7]]
>>> print a[1,2]
7
>>> print a[1,:]
[5 6 7]
>>> print a[1,1:2]
[6]
>>> a[1,:] = [8,9,10]
>>> print a
[[ 2  3  4]
 [ 8  9 10]]

使用for操作元素

代码如下:

>>> for x in np.linspace(1,3,3):
...     print x
...
1.0
2.0
3.0

基本的数组运算

先构造数组a、b:

代码如下:

>>> a = np.ones((2,2))
>>> b = np.eye(2)
>>> print a
[[ 1.  1.]
 [ 1.  1.]]
>>> print b
[[ 1.  0.]
 [ 0.  1.]]

数组的加减乘除:

代码如下:

>>> print a > 2
[[False False]
 [False False]]
>>> print a+b
[[ 2.  1.]
 [ 1.  2.]]
>>> print a-b
[[ 0.  1.]
 [ 1.  0.]]
>>> print b*2
[[ 2.  0.]
 [ 0.  2.]]
>>> print (a*2)*(b*2)
[[ 4.  0.]
 [ 0.  4.]]
>>> print b/(a*2)
[[ 0.5  0. ]
 [ 0.   0.5]]
>>> print (a*2)**4
[[ 16.  16.]
 [ 16.  16.]]

使用数组对象自带的方法:

代码如下:

>>> a.sum()
4.0
>>> a.sum(axis=0)   #计算每一列(二维数组中类似于矩阵的列)的和
array([ 2.,  2.])
>>> a.min()
1.0
>>> a.max()
1.0

使用numpy下的方法:

代码如下:

>>> np.sin(a)
array([[ 0.84147098,  0.84147098],
       [ 0.84147098,  0.84147098]])
>>> np.max(a)
1.0
>>> np.floor(a)
array([[ 1.,  1.],
       [ 1.,  1.]])
>>> np.exp(a)
array([[ 2.71828183,  2.71828183],
       [ 2.71828183,  2.71828183]])
>>> np.dot(a,a)   ##矩阵乘法
array([[ 2.,  2.],
       [ 2.,  2.]])

合并数组

使用numpy下的vstack和hstack函数:

代码如下:

>>> a = np.ones((2,2))
>>> b = np.eye(2)
>>> print np.vstack((a,b))
[[ 1.  1.]
 [ 1.  1.]
 [ 1.  0.]
 [ 0.  1.]]
>>> print np.hstack((a,b))
[[ 1.  1.  1.  0.]
 [ 1.  1.  0.  1.]]

看一下这两个函数有没有涉及到浅拷贝这种问题:

代码如下:

>>> c = np.hstack((a,b))
>>> print c
[[ 1.  1.  1.  0.]
 [ 1.  1.  0.  1.]]
>>> a[1,1] = 5
>>> b[1,1] = 5
>>> print c
[[ 1.  1.  1.  0.]
 [ 1.  1.  0.  1.]]

可以看到,a、b中元素的改变并未影响c。

深拷贝数组

数组对象自带了浅拷贝和深拷贝的方法,但是一般用深拷贝多一些:

代码如下:

>>> a = np.ones((2,2))
>>> b = a
>>> b is a
True
>>> c = a.copy()  #深拷贝
>>> c is a
False

基本的矩阵运算

转置:

代码如下:

>>> a = np.array([[1,0],[2,3]])
>>> print a
[[1 0]
 [2 3]]
>>> print a.transpose()
[[1 2]
 [0 3]]

迹:

代码如下:

>>> print np.trace(a)
4

numpy.linalg模块中有很多关于矩阵运算的方法:

代码如下:

>>> import numpy.linalg as nplg

特征值、特征向量:

代码如下:

>>> print nplg.eig(a)
(array([ 3.,  1.]), array([[ 0.        ,  0.70710678],
       [ 1.        , -0.70710678]]))

3、矩阵

numpy也可以构造矩阵对象,这里不做讨论。

原文地址:https://www.cnblogs.com/lshnice/p/9162243.html

时间: 2024-10-06 23:53:37

Python中的Numpy入门教程的相关文章

Numpy 入门教程(1)

翻译自官方文档Tentative NumPy Tutorial,有删节. Numpy 入门教程 NumPy 提供了对多维数组的支持,与Python原生支持的List类型不同,数组的所有元素必须同样的类型.数组的维度被称为axes,维数称为 rank. Numpy的数组类型为 ndarray, ndarray 的重要属性包括: ndarray.ndim:数组的维数,也称为rank ndarray.shape:数组各维的大小tuple 类型,对一个n 行m 列的矩阵来说, shape 为 (n,m)

PySide——Python图形化界面入门教程(六)

PySide——Python图形化界面入门教程(六) ——QListView和QStandardItemModel 翻译自:http://pythoncentral.io/pyside-pyqt-tutorial-qlistview-and-qstandarditemmodel/ 上一个教程中,我们讨论了Qt的QListWidget类,它用来实现简单的单列列表框(list boxes).然而,我们还需要更加灵活的widget来实现列表,Qt为此提供了QListView 来实现多种多样的项.它是一

PySide——Python图形化界面入门教程(一)

PySide——Python图形化界面入门教程(一) ——基本部件和HelloWorld 原文链接:http://pythoncentral.io/intro-to-pysidepyqt-basic-widgets-and-hello-world/ 本教程第一部分将给出PySide的最基本知识点,包含使用的对象,和一些能帮助你了解Python/Qt应用是如何构建的小例子. 首先来看一下基本的Qt对象.Qt包含了许多类去处理XML.多媒体.数据库和网络等等事物,但我们现在重点关注可视化的元素——窗

Numpy 入门教程(2)

翻译自官方文档Tentative NumPy Tutorial,有删节. 基本操作 基本的算术运算符都可以应用于数组类型,结果为对应元素之间的运,返回值为一个新的数组. >>> a = array( [20,30,40,50] ) >>> b = arange( 4 ) >>> b array([0, 1, 2, 3]) >>> c = a-b >>> c array([20, 29, 38, 47]) >&g

PySide——Python图形化界面入门教程(二)

PySide——Python图形化界面入门教程(二) ——交互Widget和布局容器 ——Interactive Widgets and Layout Containers 原文链接:http://pythoncentral.io/pyside-pyqt-tutorial-interactive-widgets-and-layout-containers/ 上一个教程中,我们了解了一些QWidget提供的功能,还有一个特殊的子类QLabel.更进一步的,我们完成了一个用来说明简单Python/Q

PySide——Python图形化界面入门教程(三)

PySide——Python图形化界面入门教程(三) ——使用内建新号和槽 ——Using Built-In Signals and Slots 上一个教程中,我们学习了如何创建和建立交互widgets,以及将他们布局的两种不同的方法.今天我们继续讨论Python/Qt应用响应用户触发的事件:信号和槽. 当用户执行一个动作——点击按钮,选择组合框的值,在文本框中打字——这个widget就会发出一个信号.这个信号自己什么都不做,它必须和槽连接起来才行.槽是一个接受信号的执行动作的对象. 连接内建P

PHP中使用curl入门教程

curl和libcurl的区别简介 https://www.jb51.net/article/68750.htm curl官网 https://curl.haxx.se/ PHP中使用curl入门教程 https://www.jb51.net/article/68763.htm PHP中使用curl的步骤 在PHP中,可以使用curl完成各种各样的功能,如抓取网页,文件的上传/下载.模拟登录等.但是这些功能的实现都是基于四个步骤完成的,所以curl的使用并不复杂. 使用curl时,主要分为以下四

程序员用于机器学习编程的Python 数据处理库 pandas 入门教程

入门介绍 pandas适合于许多不同类型的数据,包括: · 具有异构类型列的表格数据,例如SQL表格或Excel数据 · 有序和无序(不一定是固定频率)时间序列数据. · 具有行列标签的任意矩阵数据(均匀类型或不同类型) · 任何其他形式的观测/统计数据集. 由于这是一个Python语言的软件包,因此需要你的机器上首先需要具备Python语言的环境.关于这一点,请自行在网络上搜索获取方法. 关于如何获取pandas请参阅官网上的说明:pandas Installation. 通常情况下,我们可以

Python中的Numpy、SciPy、MatPlotLib安装与配置

Python安装完Numpy,SciPy和MatplotLib后,可以成为非常犀利的科研利器.网上关于这三个库的安装都写得非常不错,但是大部分人遇到的问题并不是如何安装,而是安装好后因为配置不当,在使用时总会出现import xxx error之类的错误.我也是自己摸索了很久才发现如何去正确配置的.下面就详细说下安装和配置的过程. 1.安装Python,这里选择2.7还是3.4都行,不过推荐使用2.7,毕竟现在的教程大部分还是基于2.7的,3.4跟2.7的语法还是略有不同,为了避免语法错误的麻烦