最短路径-Floyd算法(转载)

暑假,小哼准备去一些城市旅游。有些城市之间有公路,有些城市之间则没有,如下图。为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程。

上图中有4个城市8条公路,公路上的数字表示这条公路的长短。请注意这些公路是单向的。我们现在需要求任意两个城市之间的最短路程,也就是求任意两个点之间的最短路径。这个问题这也被称为“多源最短路径”问题。

现在需要一个数据结构来存储图的信息,我们仍然可以用一个4*4的矩阵(二维数组e)来存储。比如1号城市到2号城市的路程为2,则设e[1][2]的值为2。2号城市无法到达4号城市,则设置e[2][4]的值为∞。另外此处约定一个城市自己是到自己的也是0,例如e[1][1]为0,具体如下。

现在回到问题:如何求任意两点之间最短路径呢?通过之前的学习我们知道通过深度或广度优先搜索可以求出两点之间的最短路径。所以进行n2遍深度或广度优先搜索,即对每两个点都进行一次深度或广度优先搜索,便可以求得任意两点之间的最短路径。可是还有没有别的方法呢?

我们来想一想,根据我们以往的经验,如果要让任意两点(例如从顶点a点到顶点b)之间的路程变短,只能引入第三个点(顶点k),并通过这个顶点k中转即a->k->b,才可能缩短原来从顶点a点到顶点b的路程。那么这个中转的顶点k是1~n中的哪个点呢?甚至有时候不只通过一个点,而是经过两个点或者更多点中转会更短,即a->k1->k2b->或者a->k1->k2…->k->i…->b。比如上图中从4号城市到3号城市(4->3)的路程e[4][3]原本是12。如果只通过1号城市中转(4->1->3),路程将缩短为11(e[4][1]+e[1][3]=5+6=11)。其实1号城市到3号城市也可以通过2号城市中转,使得1号到3号城市的路程缩短为5(e[1][2]+e[2][3]=2+3=5)。所以如果同时经过1号和2号两个城市中转的话,从4号城市到3号城市的路程会进一步缩短为10。通过这个的例子,我们发现每个顶点都有可能使得另外两个顶点之间的路程变短。好,下面我们将这个问题一般化。

当任意两点之间不允许经过第三个点时,这些城市之间最短路程就是初始路程,如下。

假如现在只允许经过1号顶点,求任意两点之间的最短路程,应该如何求呢?只需判断e[i][1]+e[1][j]是否比e[i][j]要小即可。e[i][j]表示的是从i号顶点到j号顶点之间的路程。e[i][1]+e[1][j]表示的是从i号顶点先到1号顶点,再从1号顶点到j号顶点的路程之和。其中i是1~n循环,j也是1~n循环,代码实现如下。

for(i=1;i<=n;i++)

{
    for(j=1;j<=n;j++)
    {
        if ( e[i][j] > e[i][1]+e[1][j] )
              e[i][j] = e[i][1]+e[1][j];
    }
}  

在只允许经过1号顶点的情况下,任意两点之间的最短路程更新为:

通过上图我们发现:在只通过1号顶点中转的情况下,3号顶点到2号顶点(e[3][2])、4号顶点到2号顶点(e[4][2])以及4号顶点到3号顶点(e[4][3])的路程都变短了。

接下来继续求在只允许经过1和2号两个顶点的情况下任意两点之间的最短路程。如何做呢?我们需要在只允许经过1号顶点时任意两点的最短路程的结果下,再判断如果经过2号顶点是否可以使得i号顶点到j号顶点之间的路程变得更短。即判断e[i][2]+e[2][j]是否比e[i][j]要小,代码实现为如下。

//经过1号顶点
for(i=1;i<=n;i++)
    for(j=1;j<=n;j++)
        if (e[i][j] > e[i][1]+e[1][j])  e[i][j]=e[i][1]+e[1][j];  

//经过2号顶点
for(i=1;i<=n;i++)
    for(j=1;j<=n;j++)
        if (e[i][j] > e[i][2]+e[2][j])  e[i][j]=e[i][2]+e[2][j];  

在只允许经过1和2号顶点的情况下,任意两点之间的最短路程更新为:

通过上图得知,在相比只允许通过1号顶点进行中转的情况下,这里允许通过1和2号顶点进行中转,使得e[1][3]和e[4][3]的路程变得更短了。

同理,继续在只允许经过1、2和3号顶点进行中转的情况下,求任意两点之间的最短路程。任意两点之间的最短路程更新为:

最后允许通过所有顶点作为中转,任意两点之间最终的最短路程为:

整个算法过程虽然说起来很麻烦,但是代码实现却非常简单,核心代码只有五行:

for(k=1;k<=n;k++)
    for(i=1;i<=n;i++)
        for(j=1;j<=n;j++)
            if(e[i][j]>e[i][k]+e[k][j])
                 e[i][j]=e[i][k]+e[k][j];  

这段代码的基本思想就是:最开始只允许经过1号顶点进行中转,接下来只允许经过1和2号顶点进行中转……允许经过1~n号所有顶点进行中转,求任意两点之间的最短路程。用一句话概括就是:从i号顶点到j号顶点只经过前k号点的最短路程。

#include <stdio.h>
int main()
{
    int e[10][10],k,i,j,n,m,t1,t2,t3;
    int inf=99999999; //用inf(infinity的缩写)存储一个我们认为的正无穷值
    //读入n和m,n表示顶点个数,m表示边的条数
    scanf("%d %d",&n,&m);  

    //初始化
    for(i=1;i<=n;i++)
        for(j=1;j<=n;j++)
            if(i==j) e[i][j]=0;
              else e[i][j]=inf;  

    //读入边
    for(i=1;i<=m;i++)
    {
        scanf("%d %d %d",&t1,&t2,&t3);
        e[t1][t2]=t3;
    }  

    //Floyd-Warshall算法核心语句
    for(k=1;k<=n;k++)
        for(i=1;i<=n;i++)
            for(j=1;j<=n;j++)
                if(e[i][j]>e[i][k]+e[k][j] )
                    e[i][j]=e[i][k]+e[k][j];  

    //输出最终的结果
    for(i=1;i<=n;i++)
    {
     for(j=1;j<=n;j++)
        {
            printf("%10d",e[i][j]);
        }
        printf("\n");
    }  

    return 0;
}  

另外需要注意的是:Floyd-Warshall算法不能解决带有“负权回路”(或者叫“负权环”)的图,因为带有“负权回路”的图没有最短路。例如下面这个图就不存在1号顶点到3号顶点的最短路径。因为1->2->3->1->2->3->…->1->2->3这样路径中,每绕一次1->-2>3这样的环,最短路就会减少1,永远找不到最短路。其实如果一个图中带有“负权回路”那么这个图则没有最短路。

转自:http://blog.csdn.net/qq_34374664/article/details/52261672

时间: 2024-10-25 04:19:42

最短路径-Floyd算法(转载)的相关文章

最短路径—Floyd算法

Floyd算法 所有顶点对之间的最短路径问题是:对于给定的有向网络G=(V,E),要对G中任意两个顶点v,w(v不等于w),找出v到w的最短路径.当然我们可以n次执行DIJKSTRA算法,用FLOYD则更为直接,两种方法的时间复杂度都是一样的. 1.定义概览 Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包.Floyd-Warshall算法的时间复杂度

多源最短路径Floyd算法

多源最短路径是求图中任意两点间的最短路,采用动态规划算法,也称为Floyd算法.将顶点编号为0,1,2...n-1首先定义dis[i][j][k]为顶点 i 到 j 的最短路径,且这条路径只经过最大编号不超过k的顶点.于是我们最终要求的是dis[i][j][n-1].状态转移方程如下: dis[i][j][k]=min{dis[i][j][k-1],dis[i][k][k-1]+dis[k][j][k-1]}; 状态转移方程的解释:在计算dis[i][j][k]的时候,我们考虑 i 到 j 是否

算法基础 - 多源点最短路径(Floyd算法)

Floyd算法 Floyd算法又称为插点法,是一种用于寻找给定的加权图中多源点之间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 思路 路径矩阵 通过一个图的权值矩阵求出它的每两点间的最短路径矩阵. 从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1):又用同样地公式由D(1)构造出D(2):--:最后又用同样的公式由D(n-1)构造出矩阵D(n).矩阵D(n

最短路径(Floyd)算法

#include <stdio.h>#include <stdlib.h> /* Floyd算法 */ #define VNUM 5#define MV 65536 int P[VNUM][VNUM];int A[VNUM][VNUM];int Matrix[VNUM][VNUM] ={    {0, 10, MV, 30, 100},    {MV, 0, 50, MV, MV},    {MV, MV, 0, MV, 10},    {MV, MV, 20, 0, 60},  

单源最短路径——Floyd算法

正如我们所知道的,Floyd算法用于求最短路径.Floyd算法可以说是Warshall算法的扩展,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3). Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B.所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,

图论之最短路径floyd算法

Floyd算法是图论中经典的多源最短路径算法,即求任意两点之间的最短路径. 它可采用动态规划思想,因为它满足最优子结构性质,即最短路径序列的子序列也是最短路径. 举例说明最优子结构性质,上图中1号到5号的最短路径序列<1,2,4,5>,其子序列<1,2,4>也是最短路径. 在动态规划算法中,处于首要位置.且也是核心理念之一的就是状态的定义. 动态转移的基本思想可以认为是建立起某一状态和之前状态的一种转移表示. d[k][i][j]定义为"只能使用第1号到第k号点作为中间媒

(转)最短路径Floyd算法

本文转自:https://blog.csdn.net/jack_20/article/details/78031310 Floyd算法求所有顶点到所有顶点的最短路径,时间复杂度也为O(n^3),但其算法非常简洁优雅.为了能讲明白该算法的精妙所在,先来看最简单的案例. 下图左部分是一个最简单的3个顶点连通网图. 先定义两个数组D[3][3]和P[3][3],D代表顶点到顶点的最短路径权值和的矩阵,P代表对应顶点的最小路径的前驱矩阵.在未分析任何顶点之前,我们将D命 名为D-1 ,其实它就是初始的图

最短路径——Floyd算法

如何求一张图中任意两顶点之间的最短路径长度,这里写一种最简单的算法——Floyd算法: 1 #include<stdio.h> 2 3 #define inf 9999 4 5 int main() 6 { 7 int e[10][10]; //用邻接矩阵表示图 8 printf("请输入顶点和边的数目:"); 9 int n,m; 10 scanf("%d%d",&n,&m); 11 for(int i=0;i<n;i++) 12

计算多源最短路径 ----- floyd算法

题目链接:https://vjudge.net/contest/146629#problem/L 题目描述:有n个星球,起点在第一个星球,求走遍全部星球的 到达时间和 最小值 解题过程: 记其中第 i 个星球到达第 j 个星球所需时间为 t[i][j] 进行floyd算法处理可得到第 i 个星球到达第 j 个星球所需的最小时间: for (k = 1; k <= n; k++) for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) t[i][