Crash的数字表格(bzoj 2054)

Description

今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值。

Input

输入的第一行包含两个正整数,分别表示N和M。

Output

输出一个正整数,表示表格中所有数的和mod 20101009的值。

Sample Input

4 5

Sample Output

122

【数据规模和约定】

100%的数据满足N, M ≤ 10^7。

/*
    证明见PoPoQQQ课件:
    https://wenku.baidu.com/view/fbec9c63ba1aa8114431d9ac.html?from=search
*/
#include<cstdio>
#include<iostream>
#define N 10000010
#define mod 20101009
#define lon long long
using namespace std;
int mu[N],prime[N],mark[N],num,n,m;
lon sum[N];
void get_prime(){
    mu[1]=1;
    for(int i=2;i<=n;i++){
        if(!mark[i]) prime[++num]=i,mu[i]=-1;
        for(int j=1;j<=num&&i*prime[j]<=n;j++){
            mark[i*prime[j]]=1;
            mu[i*prime[j]]=-mu[i];
            if(i%prime[j]==0){
                mu[i*prime[j]]=0;
                break;
            }
        }
    }
    for(int i=1;i<=n;i++) sum[i]=(sum[i-1]+(1LL*mu[i]*i%mod*i%mod))%mod;
}
lon getsum(lon x,lon y){
    x=(x*(x+1)/2)%mod;
    y=(y*(y+1)/2)%mod;
    return x*y%mod;
}
lon getf(int x,int y){
    int pos;lon ans=0;
    for(int i=1;i<=min(x,y);i=pos+1){
        pos=min(x/(x/i),y/(y/i));
        ans=(ans+(sum[pos]-sum[i-1]+mod)%mod*getsum((lon)x/i,(lon)y/i)%mod)%mod;
    }
    return ans;
}
int main(){
    scanf("%d%d",&n,&m);
    if(n>m) swap(n,m);
    get_prime();
    int pos;lon ans=0;
    for(int i=1;i<=n;i=pos+1){
        pos=min(n/(n/i),m/(m/i));
        ans=(ans+1LL*(i+pos)*(pos-i+1)/2%mod*getf(n/i,m/i)%mod)%mod;
    }
    cout<<ans;
    return 0;
}
时间: 2024-10-25 20:08:28

Crash的数字表格(bzoj 2054)的相关文章

【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&amp;&amp;BZOJ 2693 jzptab)

BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j).一个4*5的表格如下: 1 2 3 4 5 2 2 6 4

Crash的数字表格 BZOJ 2154 / jzptab BZOJ 2693

jzptab [问题描述] 求: 多组询问 [输入格式] 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M [输出格式] T行 每行一个整数 表示第i组数据的结果 [样例输入] 1 4 5 [样例输出] 122 [数据范围] T <= 10000 N, M<=10000000 题解: 即后面那个部分为 H[T],H[T]是积性函数,求详细证明的话将T和d展开为质因数次幂相乘的形式,考虑线性筛中枚举的质数与被筛数的性质即可 1 #include<cmath> 2 #i

BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][Discuss] Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究

【BZOJ 2154】Crash的数字表格 (莫比乌斯+分块)

2154: Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j).一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3

Crash的数字表格(莫比乌斯反演)

Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张NM的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j).一个4 5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12

[bzoj 2154]Crash的数字表格

Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j).一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12

bzoj 2154 Crash的数字表格(莫比乌斯反演及优化)

Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j).一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12

【BZOJ】【2154】Crash的数字表格

莫比乌斯反演 PoPoQQQ讲义第4题 题解:http://www.cnblogs.com/jianglangcaijin/archive/2013/11/27/3446169.html 感觉两次sqrt(n)的枚举是亮点…… RE:汗- -b 10^7是8位数,开数组少打了一个0…… 1 /************************************************************** 2 Problem: 2154 3 User: Tunix 4 Language

【BZOJ】2154: Crash的数字表格

http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题意:求$\sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i, j)$, $n,m<=1e7$ #include <bits/stdc++.h> using namespace std; typedef long long ll; const int N=1e7+10, MD=20101009; int p[N], pcnt, n, m; bool np[N];