机器学习基石第七讲 The VC Dimension

一.Definition of VC Dimension

时间: 2024-10-08 13:40:40

机器学习基石第七讲 The VC Dimension的相关文章

机器学习基石——第7-8讲.The VC dimension

本栏目(机器学习)下机器学习基石专题是个人对Coursera公开课机器学习基石(2014)的学习心得与笔记.所有内容均来自Coursera公开课Machine Learning Foundations中Hsuan-Tien Lin林轩田老师的讲解.(https://class.coursera.org/ntumlone-002/lecture) 第7讲-------The VC dimension 一.VC dimension的定义 VC dimension是什么呢?大家可能猜到了,这是和我们上

机器学习基石第六讲:theory of generalization

博客已经迁移至Marcovaldo's blog (http://marcovaldong.github.io/) 机器学习基石第六讲继续讨论"学习是否可行的问题". Restriction of Break Point 继续前面的讨论,我们看mH(N)是否会有一个很小的增长速度.回顾前面的四种成长函数及其break point.我们知道k是一个成长函数的break point,那比k大的值全是break point. mH(N)是一个hypothesis在N个数据点上可以产生的dic

机器学习基石第八讲:noise and error

博客已经迁移至Marcovaldo's blog (http://marcovaldong.github.io/) 机器学习基石第八讲主要介绍噪声和误差度量,笔记整理在下面. Noise and Probabilistic Target 现实中的数据很可能含有噪声(noise),例如前面的信用卡发放问题中,有的顾客符合发放标准但没有发给,或者同样情况的顾客有人发了有人没法,再或者顾客的信息不正确等等,VC bound是否在由噪声的情况下工作呢? 继续使用前面抽弹珠的例子,罐子中每一个弹珠代表一个

机器学习基石——第13-14讲.Hazard of Overfitting

本栏目(机器学习)下机器学习基石专题是个人对Coursera公开课机器学习基石(2014)的学习心得与笔记.所有内容均来自Coursera公开课Machine Learning Foundations中Hsuan-Tien Lin林轩田老师的讲解.(https://class.coursera.org/ntumlone-002/lecture) 第13讲-------Hazard of Overfitting 从这一节开始,我们开始探讨How Can Machines Learn Better的

机器学习基石——第15-16讲.Validation

本栏目(机器学习)下机器学习基石专题是个人对Coursera公开课机器学习基石(2014)的学习心得与笔记.所有内容均来自Coursera公开课Machine Learning Foundations中Hsuan-Tien Lin林轩田老师的讲解.(https://class.coursera.org/ntumlone-002/lecture) 第15讲-------Validation 一.模型选择问题 机器学习的每个模型都有各式各样的参数.即使只是对于二元分类,学习算法上可以选择PLA,LR

机器学习基石——第9-10讲.Linear Regression

本栏目(机器学习)下机器学习基石专题是个人对Coursera公开课机器学习基石(2014)的学习心得与笔记.所有内容均来自Coursera公开课Machine Learning Foundations中Hsuan-Tien Lin林轩田老师的讲解.(https://class.coursera.org/ntumlone-002/lecture) 第9讲-------Linear Regression 从这一节开始,开始涉及到How Can Machines Learn的问题了. 一.Linear

机器学习基石——第5-6讲.Training versus Testing

本栏目(机器学习)下机器学习基石专题是个人对Coursera公开课机器学习基石(2014)的学习心得与笔记.所有内容均来自Coursera公开课Machine Learning Foundations中Hsuan-Tien Lin林轩田老师的讲解.(https://class.coursera.org/ntumlone-002/lecture) 第5讲-------Training versus Testing 从这一讲开始,讲的问题就是属于Why Can Machines Learn的范畴了.

机器学习基石——第1-2讲.The Learning Problem

本栏目(机器学习)下机器学习基石专题是个人对Coursera公开课机器学习基石(2014)的学习心得与笔记.所有内容均来自Coursera公开课Machine Learning Foundations中Hsuan-Tien Lin林轩田老师的讲解.(https://class.coursera.org/ntumlone-002/lecture) 第一讲-------The Learning Problem 一.课程总体 Machine Learning是一个理论与应用混合的工具,本课程则主要是f

机器学习基石——第3-4讲.Types of Learning

本栏目(机器学习)下机器学习基石专题是个人对Coursera公开课机器学习基石(2014)的学习心得与笔记.所有内容均来自Coursera公开课Machine Learning Foundations中Hsuan-Tien Lin林轩田老师的讲解.(https://class.coursera.org/ntumlone-002/lecture) 第3讲-------Types of Learning 上一节讲到如果要回答YES/NO的是非问题,我们可以使用像PLA(感知机)这样的算法,他会在无数