[再寄小读者之数学篇](2014-06-18 积分、微分不等式)

设 $f$ 为 $[0,1]$ 上的连续正函数, 且 $\dps{f^2(t)\leq 1+2\int_0^t f(s)\rd s}$. 证明: $f(t)\leq 1+t$.

证明: 设 $\dps{F(t)=\int_0^t f(s)\rd s}$, 则 $F(0)=0$, 且 $$\beex \bea F‘^2(t)&\leq 1+2F(t),\\ \cfrac{\rd F(t)}{\sqrt{1+2F(t)}}&\leq \rd t,\\ \sqrt{1+2F(t)}-\sqrt{1+2F(0)}&\leq t,\\ \sqrt{1+2F(t)}&\leq 1+t,\\ 2F(t)&\leq (1+t)^2-1=2t+t^2,\\ f^2(t)&\leq 1+2F(t)=1+2t+t^2=(1+t)^2,\\ f(t)&\leq 1+t. \eea \eeex$$

[再寄小读者之数学篇](2014-06-18 积分、微分不等式)

时间: 2024-10-14 15:57:27

[再寄小读者之数学篇](2014-06-18 积分、微分不等式)的相关文章

再寄小读者之数学篇[2014.07.01-2014.12.31]

[再寄小读者之数学篇](2014-07-09 多项式的辗转相除与线性变换) 设 $V$ 是由次数不超过 $4$ 的一切实系数一元多项式组成的向量空间. 对于 $V$ 上的任意多项式 $f(x)$, 以 $x^2-1$ 除 $f(x)$ 所得的商式及余式分别为 $q(x)$ 和 $r(x)$, 记 $$\bex f(x)=q(x)(x^2-1)+r(x). \eex$$ 设 $\scrA$ 是 $V$ 到 $V$ 的映射, 使得 $$\bex \scrA(f(x))=r(x). \eex$$ 试证

再寄小读者之数学篇[2014.01.01-2014.06.30]

[再寄小读者之数学篇](2014-06-28 证明级数几乎处处收敛) 设 $f\in L(\bbR)$, 试证: $$\bex \vsm{n}f(n^2x) \eex$$ 在 $\bbR$ 上几乎处处收敛到一 Lebesgue 函数. [再寄小读者之数学篇](2014-06-27 向量公式: The Hall term) $$\bex \n\cdot{\bf b}=0\ra \n\times [(\n\times {\bf b})\times {\bf b}]=\n\times [\n\cdot

[再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac{1}{b-a}\int_a^b f^p(t)\rd t. \eex$$ 试求 $\dps{\vlm{p}x_p}$. 解答: 由 H\"older 不等式, $$\beex \bea f^p(x_p)&=\cfrac{1}{b-a}\int_a^b f^p(t)\cdot 1\rd t\\

[再寄小读者之数学篇](2014-07-16 与对数有关的不等式)

试证: $$\bex (1+a)\ln (1+a)+(1+b)\ln (1+b)<(1+a+b)\ln (1+a+b),\quad \forall\ a,b>0. \eex$$ 提示:  对函数 $f(x)=x\ln x$, 有 $$\bex f'(x)=\ln x+1,\quad f''(x)=\frac{1}{x}>0,\quad (x>0). \eex$$ 按照 [2014-07-16 凹函数与次线性性] 即得结论. [再寄小读者之数学篇](2014-07-16 与对数有关的

[再寄小读者之数学篇](2014-06-20 求极限---积分中值定理的应用)

证明: 当 $m<2$ 时, $\dps{\lim_{x\to 0^+}\cfrac{1}{x^m}\int_0^x \sin \cfrac{1}{t}\rd t=0}$. 证明: $$\beex \bea \lim_{x\to 0^+}\cfrac{1}{x^m}\int_0^x \sin \cfrac{1}{t}\rd t &=\lim_{x\to 0^+} \cfrac{1}{x^m} \int_0^x t^2\rd \cos \cfrac{1}{t}\\ &=\lim_{x\

[再寄小读者之数学篇](2014-06-19 利用分部积分求函数值)

设 $f\in C^2[0,\pi]$, 且 $f(\pi)=2$, $\dps{\int_0^\pi [f(x)+f''(x)]\sin x\rd x=5}$. 求 $f(0)$. 解答: 由 $$\beex \bea 5&=\int_0^\pi [f(x)+f''(x)]\sin x\rd x\\ &=\int_0^\pi f(x)\sin x\rd x +\int_0^\pi \sin x\rd f'(x)\\ &=\int_0^\pi f(x)\sin x\rd x -\i

[再寄小读者之数学篇](2014-11-21 关于积和式的一个不等式)

在 Rajendra Bhatia 的 Matrix Analysis 中, Exercise I.5.8 说: Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B). \eex$$ (The corresponding relation for determinants is an easy equality.) 到目前为止, 我还没能证出. 不过得到一个貌

[再寄小读者之数学篇](2014-05-20 一个分部积分)

∫△f|f|q?2fdx=?∫?f?[(q?2)|f|q?3f|f|?f?f+|f|q?2?f]dx=?∫(q?2)|f|q?4|f|2|?f|2+|f|q?2|?f|dx=?(q?1)∫|f|q?2|?f|2dx=?(q?1)∫|f|q?2|?|f||2dx(?|f|=f|f|?f)=?(q?1)∫||f|q2?1?|f||2dx=?4(q?1)q2∫|?|f|q2|2dx.

[再寄小读者之数学篇](2014-06-14 [四川师范大学 2014 年数学分析考研试题] 积分不等式)

设函数 $f$ 在 $[0,1]$ 上有连续的二阶导数且 $f(0)=f(1)=0$, 但 $f(x)$ 在 $[0,1]$ 上不恒等于零. 证明: $$\bex |f(x)|\leq \cfrac{1}{4}\int_0^1 |f''(x)|\rd x,\quad \forall\ x\in [0,1]. \eex$$ [再寄小读者之数学篇](2014-06-14 [四川师范大学 2014 年数学分析考研试题] 积分不等式),布布扣,bubuko.com

[再寄小读者之数学篇](2014-06-23 Bernstein&#39;s inequality)

$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq \sen{D^k f}_{L^p}\leq C2^{jk} \sen{f}_{L^p}; \eex$$ $$\bex \supp \hat u\subset \sed{|\xi|\leq 2^j} \ra \sen{f}_{L^q}\leq C2^{jn\sex{\frac{1}{p}-\frac{