Golang-简洁的并发

多核处理器越来越普及。有没有一种简单的办法,能够让我们写的软件释放多核的威力?是有的。随着Golang, Erlang, Scala等为并发设计的程序语言的兴起,新的并发模式逐渐清晰。正如过程式编程和面向对象一样,一个好的编程模式有一个极其简洁的内核,还有在此之上丰富的外延。可以解决现实世界中各种各样的问题。本文以GO语言为例,解释其中内核、外延。

并发模式之内核

这种并发模式的内核只需要 协程 和 通道 就够了。协程负责执行代码,通道负责在协程之间传递事件。

不久前,并发编程是个非常困难的事。要想编写一个良好的并发程序,我们不得不了解线程,锁,semaphore,barrier甚至CPU更新高速缓存的方式,而且他们个个都有怪脾气,处处是陷阱。笔者除非万不得以,决不会自己操作这些底层并发元素。一个简洁的并发模式不需要这些复杂的底层元素,协程和通道就够了。

协程是轻量级的线程。在过程式编程中,当调用一个过程的时候,需要等待其执行完才返回。而调用一个协程的时候,不需要等待其执行完,会立即返回。协程十分轻量,Go语言可以在一个进程中执行有数以十万计的协程,依旧保持高性能。而对于普通的平台,一个进程有数千个线程,其CPU会忙于上下文切换,性能急剧下降。随意创建线程可不是一个好主意,但是我们可以大量使用的协程。

通道是协程之间的数据传输通道。通道可以在众多的协程之间传递数据,具体可以值也可以是个引用。通道有两种使用方式。

  • 协程可以试图向通道放入数据,如果通道满了,会挂起协程,直到通道可以为他放入数据为止。
  • 协程可以试图向通道索取数据,如果通道没有数据,会挂起协程,直到通道返回数据为止。

如此,通道就可以在传递数据的同时,控制协程的运行。有点像事件驱动,也有点像阻塞队列。

这两个概念非常的简单,各个语言平台都会有相应的实现。在Java和C上也各有库可以实现两者。

Golang Erlang Scala(Actor)
协程  goroutines process actor
消息队列  channel mailbox channel

只要有协程和通道,就可以优雅的解决并发的问题。不必使用其他和并发有关的概念。那如何用这两把利刃解决各式各样的实际问题呢?

并发模式之外延

协程相较于线程,可以大量创建。打开这扇门,我们拓展出新的用法,可以做生成器,可以让函数返回“服务”,可以让循环并发执行,还能共享变量。但是出现新的用法的同时,也带来了新的棘手问题,协程也会泄漏,不恰当的使用会影响性能。下面会逐一介绍各种用法和问题。演示的代码用GO语言写成,因为其简洁明了,而且支持全部功能。

生成器

有的时候,我们需要有一个函数能不断生成数据。比方说这个函数可以读文件,读网络,生成自增长序列,生成随机数。这些行为的特点就是,函数的已知一些变量,如文件路径。然后不断调用,返回新的数据。

下面生成随机数为例, 以让我们做一个会并发执行的随机数生成器。

非并发的做法是这样的:

// 函数 rand_generator_1 ,返回 int

func rand_generator_1() int { return rand.Int()
}

上面是一个函数,返回一个int。假如rand.Int()这个函数调用需要很长时间等待,那该函数的调用者也会因此而挂起。所以我们可以创建一个协程,专门执行rand.Int()。

// 函数 rand_generator_2,返回 通道(Channel) func rand_generator_2() chan int { // 创建通道 out := make(chan int) // 创建协程 go func() { for { //向通道内写入数据,如果无人读取会等待 out <- rand.Int()
        }
    }() return out }

func main() { // 生成随机数作为一个服务 rand_service_handler := rand_generator_2() // 从服务中读取随机数并打印 fmt.Printf("%d\n", <-rand_service_handler)
}

上面的这段函数就可以并发执行了rand.Int()。有一点值得注意到函数的返回可以理解为一个“服务”。但我们需要获取随机数据 时候,可以随时向这个服务取用,他已经为我们准备好了相应的数据,无需等待,随要随到。如果我们调用这个服务不是很频繁,一个协程足够满足我们的需求了。但如果我们需要大量访问,怎么办?我们可以用下面介绍的多路复用技术,启动若干生成器,再将其整合成一个大的服务。

调用生成器,可以返回一个“服务”。可以用在持续获取数据的场合。用途很广泛,读取数据,生成ID,甚至定时器。这是一种非常简洁的思路,将程序并发化。

多路复用

多路复用是让一次处理多个队列的技术。Apache使用处理每个连接都需要一个进程,所以其并发性能不是很好。而Nighx使用多路复用的技术,让一个进程处理多个连接,所以并发性能比较好。同样,在协程的场合,多路复用也是需要的,但又有所不同。多路复用可以将若干个相似的小服务整合成一个大服务。

那么让我们用多路复用技术做一个更高并发的随机数生成器吧。

// 函数 rand_generator_3 ,返回通道(Channel) func rand_generator_3() chan int { // 创建两个随机数生成器服务 rand_generator_1 := rand_generator_2()
    rand_generator_2 := rand_generator_2() //创建通道 out := make(chan int) //创建协程 go func() { for { //读取生成器1中的数据,整合 out <- <-rand_generator_1
        }
    }()
    go func() { for { //读取生成器2中的数据,整合 out <- <-rand_generator_2
        }
    }() return out }

上面是使用了多路复用技术的高并发版的随机数生成器。通过整合两个随机数生成器,这个版本的能力是刚才的两倍。虽然协程可以大量创建,但是众多协程还是会争抢输出的通道。Go语言提供了Select关键字来解决,各家也有各家窍门。加大输出通道的缓冲大小是个通用的解决方法。

多路复用技术可以用来整合多个通道。提升性能和操作的便捷。配合其他的模式使用有很大的威力。

Furture技术

Furture是一个很有用的技术,我们常常使用Furture来操作线程。我们可以在使用线程的时候,可以创建一个线程,返回Furture,之后可以通过它等待结果。 但是在协程环境下的Furtue可以更加彻底,输入参数同样可以是Furture的。

调用一个函数的时候,往往是参数已经准备好了。调用协程的时候也同样如此。但是如果我们将传入的参数设为通道,这样我们就可以在不准备好参数的情况下调用函数。这样的设计可以提供很大的自由度和并发度。函数调用和函数参数准备这两个过程可以完全解耦。下面举一个用该技术访问数据库的例子。

//一个查询结构体 type query struct { //参数Channel sql chan string //结果Channel result chan string } //执行Query func execQuery(q query) { //启动协程 go func() { //获取输入 sql := <-q.sql //访问数据库,输出结果通道 q.result <- "get " + sql
    }()

}

func main() { //初始化Query q :=
        query{make(chan string, 1), make(chan string, 1)} //执行Query,注意执行的时候无需准备参数 execQuery(q) //准备参数 q.sql <- "select * from table" //获取结果 fmt.Println(<-q.result)
}

上面利用Furture技术,不单让结果在Furture获得,参数也是在Furture获取。准备好参数后,自动执行。Furture和生成器的区别在于,Furture返回一个结果,而生成器可以重复调用。还有一个值得注意的地方,就是将参数Channel和结果Channel定义在一个结构体里面作为参数,而不是返回结果Channel。这样做可以增加聚合度,好处就是可以和多路复用技术结合起来使用。

Furture技术可以和各个其他技术组合起来用。可以通过多路复用技术,监听多个结果Channel,当有结果后,自动返回。也可以和生成器组合使用,生成器不断生产数据,Furture技术逐个处理数据。Furture技术自身还可以首尾相连,形成一个并发的pipe filter。这个pipe filter可以用于读写数据流,操作数据流。

Future是一个非常强大的技术手段。可以在调用的时候不关心数据是否准备好,返回值是否计算好的问题。让程序中的组件在准备好数据的时候自动跑起来。

并发循环

循环往往是性能上的热点。如果性能瓶颈出现在CPU上的话,那么九成可能性热点是在一个循环体内部。所以如果能让循环体并发执行,那么性能就会提高很多。

要并发循环很简单,只有在每个循环体内部启动协程。协程作为循环体可以并发执行。调用启动前设置一个计数器,每一个循环体执行完毕就在计数器上加一个元素,调用完成后通过监听计数器等待循环协程全部完成。

//建立计数器 sem := make(chan int, N); //FOR循环体 for i,xi := range data { //建立协程 go func (i int, xi float) {
        doSomething(i,xi); //计数 sem <- 0;
    } (i, xi);
} // 等待循环结束 for i := 0; i < N; ++i { <-sem }

上面是一个并发循环例子。通过计数器来等待循环全部完成。如果结合上面提到的Future技术的话,则不必等待。可以等到真正需要的结果的地方,再去检查数据是否完成。

通过并发循环可以提供性能,利用多核,解决CPU热点。正因为协程可以大量创建,才能在循环体中如此使用,如果是使用线程的话,就需要引入线程池之类的东西,防止创建过多线程,而协程则简单的多。

Chain Filter技术

前面提到了Future技术首尾相连,可以形成一个并发的pipe filter。这种方式可以做很多事情,如果每个Filter都由同一个函数组成,还可以有一种简单的办法把他们连起来。

由于每个Filter协程都可以并发运行,这样的结构非常有利于多核环境。下面是一个例子,用这种模式来产生素数。

// A concurrent prime sieve package main // Send the sequence 2, 3, 4, ... to channel ‘ch‘. func Generate(ch chan<- int) { for i := 2; ; i++ {
        ch <- i // Send ‘i‘ to channel ‘ch‘. }
} // Copy the values from channel ‘in‘ to channel ‘out‘, // removing those divisible by ‘prime‘. func Filter(in <-chan int, out chan<- int, prime int) { for {
        i := <-in // Receive value from ‘in‘. if i%prime != 0 { out <- i // Send ‘i‘ to ‘out‘. }
    }
} // The prime sieve: Daisy-chain Filter processes. func main() {
    ch := make(chan int) // Create a new channel. go Generate(ch) // Launch Generate goroutine. for i := 0; i < 10; i++ {
        prime := <-ch
        print(prime, "\n")
        ch1 := make(chan int)
        go Filter(ch, ch1, prime)
        ch = ch1
    }
}

上面的程序创建了10个Filter,每个分别过滤一个素数,所以可以输出前10个素数。

Chain-Filter通过简单的代码创建并发的过滤器链。这种办法还有一个好处,就是每个通道只有两个协程会访问,就不会有激烈的竞争,性能会比较好。

共享变量

协程之间的通信只能够通过通道。但是我们习惯于共享变量,而且很多时候使用共享变量能让代码更简洁。比如一个Server有两个状态开和关。其他仅仅希望获取或改变其状态,那又该如何做呢。可以将这个变量至于0通道中,并使用一个协程来维护。

下面的例子描述如何用这个方式,实现一个共享变量。

//共享变量有一个读通道和一个写通道组成 type sharded_var struct {
    reader chan int writer chan int } //共享变量维护协程 func sharded_var_whachdog(v sharded_var) {
    go func() { //初始值 var value int = 0 for { //监听读写通道,完成服务 select { case value = <-v.writer: case v.reader <- value:
            }
        }
    }()
}

func main() { //初始化,并开始维护协程 v := sharded_var{make(chan int), make(chan int)}
    sharded_var_whachdog(v) //读取初始值 fmt.Println(<-v.reader) //写入一个值 v.writer <- 1 //读取新写入的值 fmt.Println(<-v.reader)
}

这样,就可以在协程和通道的基础上实现一个协程安全的共享变量了。定义一个写通道,需要更新变量的时候,往里写新的值。再定义一个读通道,需要读的时候,从里面读。通过一个单独的协程来维护这两个通道。保证数据的一致性。

一般来说,协程之间不推荐使用共享变量来交互,但是按照这个办法,在一些场合,使用共享变量也是可取的。很多平台上有较为原生的共享变量支持,到底用那种实现比较好,就见仁见智了。另外利用协程和通道,可以还实现各种常见的并发数据结构,如锁等等,就不一一赘述。

协程泄漏

协程和内存一样,是系统的资源。对于内存,有自动垃圾回收。但是对于协程,没有相应的回收机制。会不会若干年后,协程普及了,协程泄漏和内存泄漏一样成为程序员永远的痛呢?一般而言,协程执行结束后就会销毁。协程也会占用内存,如果发生协程泄漏,影响和内存泄漏一样严重。轻则拖慢程序,重则压垮机器。

C和C++都是没有自动内存回收的程序设计语言,但只要有良好的编程习惯,就能解决规避问题。对于协程是一样的,只要有好习惯就可以了。

只有两种情况会导致协程无法结束。一种情况是协程想从一个通道读数据,但无人往这个通道写入数据,或许这个通道已经被遗忘了。还有一种情况是程想往一个通道写数据,可是由于无人监听这个通道,该协程将永远无法向下执行。下面分别讨论如何避免这两种情况。

对于协程想从一个通道读数据,但无人往这个通道写入数据这种情况。解决的办法很简单,加入超时机制。对于有不确定会不会返回的情况,必须加入超时,避免出现永久等待。另外不一定要使用定时器才能终止协程。也可以对外暴露一个退出提醒通道。任何其他协程都可以通过该通道来提醒这个协程终止。

对于协程想往一个通道写数据,但通道阻塞无法写入这种情况。解决的办法也很简单,就是给通道加缓冲。但前提是这个通道只会接收到固定数目的写入。比方说,已知一个通道最多只会接收N次数据,那么就将这个通道的缓冲设置为N。那么该通道将永远不会堵塞,协程自然也不会泄漏。也可以将其缓冲设置为无限,不过这样就要承担内存泄漏的风险了。等协程执行完毕后,这部分通道内存将会失去引用,会被自动垃圾回收掉。

func never_leak(ch chan int) { //初始化timeout,缓冲为1 timeout := make(chan bool, 1) //启动timeout协程,由于缓存为1,不可能泄露 go func() {
        time.Sleep(1 * time.Second)
        timeout <- true }() //监听通道,由于设有超时,不可能泄露 select { case <-ch: // a read from ch has occurred case <-timeout: // the read from ch has timed out }
}

上面是个避免泄漏例子。使用超时避免读堵塞,使用缓冲避免写堵塞。

和内存里面的对象一样,对于长期存在的协程,我们不用担心泄漏问题。一是长期存在,二是数量较少。要警惕的只有那些被临时创建的协程,这些协程数量大且生命周期短,往往是在循环中创建的,要应用前面提到的办法,避免泄漏发生。协程也是把双刃剑,如果出问题,不但没能提高程序性能,反而会让程序崩溃。但就像内存一样,同样有泄漏的风险,但越用越溜了。

并发模式之实现

在并发编程大行其道的今天,对协程和通道的支持成为各个平台比不可少的一部分。虽然各家有各家的叫法,但都能满足协程的基本要求—并发执行和可大量创建。笔者对他们的实现方式总结了一下。

下面列举一些已经支持协程的常见的语言和平台。

语言/平台 实现时间 协程名称 备注
GoLang 原生支持 goroutines
Erlang 原生支持 process 函数式语言
Scala 原生支持 actor 函数式编程
Python 2.5版本后 coroutine 官方Python不完全实现 
Stackless Python支持
Perl 6.0版本后 coroutine
Ruby 1.9 版本后 fiber
Lua 原生支持 coroutine
C# .net 2.0版本后 fiber

GoLang 和Scala作为最新的语言,一出生就有完善的基于协程并发功能。Erlang最为老资格的并发编程语言,返老还童。其他二线语言则几乎全部在新的版本中加入了协程。

令人惊奇的是C/C++和Java这三个世界上最主流的平台没有在对协程提供语言级别的原生支持。他们都背负着厚重的历史,无法改变,也无需改变。但他们还有其他的办法使用协程。

Java平台有很多方法实现协程:

  • 修改虚拟机:对JVM打补丁来实现协程,这样的实现效果好,但是失去了跨平台的好处
  • 修改字节码:在编译完成后增强字节码,或者使用新的JVM语言。稍稍增加了编译的难度。
  • 使用JNI:在Jar包中使用JNI,这样易于使用,但是不能跨平台。
  • 使用线程模拟协程:使协程重量级,完全依赖JVM的线程实现。

其中修改字节码的方式比较常见。因为这样的实现办法,可以平衡性能和移植性。最具代表性的JVM语言Scala就能很好的支持协程并发。流行的Java Actor模型类库akka也是用修改字节码的方式实现的协程。

对于C语言,协程和线程一样。可以使用各种各样的系统调用来实现。协程作为一个比较高级的概念,实现方式实在太多,就不讨论了。比较主流的实现有libpcl, coro,lthread等等。

对于C++,有Boost实现,还有一些其他开源库。还有一门名为μC++语言,在C++基础上提供了并发扩展。

可见这种编程模型在众多的语言平台中已经得到了广泛的支持,不再小众。如果想使用的话,随时可以加到自己的工具箱中。

结语

本文探讨了一个极其简洁的并发模型。在只有协程和通道这两个基本元件的情况下。可以提供丰富的功能,解决形形色色实际问题。而且这个模型已经被广泛的实现,成为潮流。相信这种并发模型的功能远远不及此,一定也会有更多更简洁的用法出现。或许未来CPU核心数目将和人脑神经元数目一样多,到那个时候,我们又要重新思考并发模型了。

时间: 2024-10-15 18:13:14

Golang-简洁的并发的相关文章

Golang适合高并发场景的原因分析

典型的两个现实案例: 我们先看两个用Go做消息推送的案例实际处理能力. 360消息推送的数据: 16台机器,标配:24个硬件线程,64GB内存 Linux Kernel 2.6.32 x86_64 单机80万并发连接,load 0.2~0.4,CPU 总使用率 7%~10%,内存占用20GB (res) 目前接入的产品约1280万在线用户 2分钟一次GC,停顿2秒 (1.0.3 的 GC 不给力,直接升级到 tip,再次吃螃蟹) 15亿个心跳包/天,占大多数. 京东云消息推送系统 (团队人数:4

[转]Golang适合高并发场景的原因分析

来源:http://blog.csdn.net/ghj1976/article/details/27996095 作者:蝈蝈俊 典型的两个现实案例: 我们先看两个用Go做消息推送的案例实际处理能力. 360消息推送的数据: 16台机器,标配:24个硬件线程.64GB内存 Linux Kernel 2.6.32 x86_64 单机80万并发连接,load 0.2~0.4,CPU 总使用率 7%~10%,内存占用20GB (res) 眼下接入的产品约1280万在线用户 2分钟一次GC.停顿2秒 (1

进一步认识golang中的并发

如果你成天与编程为伍,那么并发这个名词对你而言一定特别耳熟.需要并发的场景太多了,例如一个聊天程序,如果你想让这个聊天程序能够同时接收信息和发送信息,就一定会用到并发,无论那是什么样的并发. 并发的意义就是:让一个程序同时做多件事情! 理解这一点非常重要,是的,并发的目的只是为了能让程序同时做另一件事情而已,并发的目的并不是让程序运行的更快(如果是多核处理器,而且任务可以分成相互独立的部分,那么并发确实可以让事情解决的更快).记得我学C++那时候开始接触并发,还以为每开一个线程程序就会加速一倍呢

golang中map并发读写问题及解决方法

一.map并发读写问题 如果map由多协程同时读和写就会出现 fatal error:concurrent map read and map write的错误 如下代码很容易就出现map并发读写问题 func main(){ c := make(map[string]int)       go func() {//开一个协程写map            for j := 0; j < 1000000; j++ {              c[fmt.Sprintf("%d",

Golang并发中channel的分析

问题:面对并发问题,是用channel解决,还是用Mutex解决? 如果自己心里还没有清晰的答案,那就读下这篇文章,你会了解到: 使用channel解决并发问题的核心思路和示例 channel擅长解决什么样的并发问题,Mutex擅长解决什么样的并发问题 一个并发问题该怎么入手解解决 一个重要的plus思维 前戏 前面很多篇的文章都在围绕channel介绍,而只有前一篇sync的文章介绍到了Mutex,不是我偏心,而是channel在Golang是first class级别的,设计在语言特性中的,

[转Go-简洁的并发 ]

http://www.yankay.com/go-clear-concurreny/ Posted on 2012-11-28by yankay 多核处理器越来越普及.有没有一种简单的办法,能够让我们写的软件释放多核的威力?是有的.随着Golang, Erlang, Scala等为并发设计的程序语言的兴起,新的并发模式逐渐清晰.正如过程式编程和面向对象一样,一个好的编程模式有一个极其简洁的内核,还有在此之上丰富的外延.可以解决现实世界中各种各样的问题.本文以GO语言为例,解释其中内核.外延. 并

Golang全接触

满打满算, 从好友推荐Golang至发文时, 使用Golang已经有1年多了. 这种时间对于C/C++ Java这些老者来说, 简直是菜鸟级别的经验 但作为新生代语言的特点就是实战. Golang这一年里, 已经为项目提供了稳定的服务器和强大的扩展能力, 与客户端的Unity3D里的C#一样, 都是强大, 极致开发效率代表的优秀开发语言. 用途篇 Golang到底拿来做啥? 我需要么? 高效(性能,开发)的服务器语言. 包括Web, 游戏, App 编写桌面级UI暂不是很适合 我需要把现在的C+

Golang 微框架 Gin 简介

框架一直是敏捷开发中的利器,能让开发者很快的上手并做出应用,甚至有的时候,脱离了框架,一些开发者都不会写程序了.成长总不会一蹴而就,从写出程序获取成就感,再到精通框架,快速构造应用,当这些方面都得心应手的时候,可以尝试改造一些框架,或是自己创造一个. 曾经我以为Python世界里的框架已经够多了,后来发现相比golang简直小巫见大巫.golang提供的net/http库已经很好了,对于http的协议的实现非常好,基于此再造框架,也不会是难事,因此生态中出现了很多框架.既然构造框架的门槛变低了,

今晚八点 golang 分享《如何在60分钟掌握 go 协程&amp;管道 &amp; socket 通信》

今晚八点 golang 分享<如何在60分钟掌握 go 协程&管道 & socket 通信> 内容如下: 功能演示 知识点学习 Golang 介绍 go 并发编程与通信 TCP/IP 协议族 socket 实战 使用 go net 模块开发 tcp 服务器与客户端 代码讲解 分享时间:2019.5.28——20:00-21:30 主讲人:kk 多语言混搭开发工程师,多年 PHP.Python 项目开发经验,带领团队完成多个中.小型项目开发.擅长于 Web 安全开发.性能优化.分