CODEVS_1227 方格取数2 网络流 最小费用流 拆点

原题链接:http://codevs.cn/problem/1227/

题目描述 Description

给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来,该格子的数就变成0,这样一共走K次,现在要求K次所达到的方格的数的和最大

输入描述 Input Description

第一行两个数n,k(1<=n<=50, 0<=k<=10)

接下来n行,每行n个数,分别表示矩阵的每个格子的数

输出描述 Output Description

一个数,为最大和

样例输入 Sample Input

3 1

1 2 3

0 2 1

1 4 2

样例输出 Sample Output

11

数据范围及提示 Data Size & Hint

1<=n<=50, 0<=k<=10

这道题是道很裸的拆点最小费用流,每个点拆开后建两条边,一条费用是-a[i][j],容量为1,另一条费用是0,容量为INF。其余的都用费用为0,容量为INF的边连接,每个点连到汇点。最后最小费用流的相反数就是答案。详见代码:

#include<iostream>
#include<vector>
#include<cstring>
#include<algorithm>
#include<string>
#include<queue>
#include<set>
#define MAX_N 55
#define MAX_V 6000
#define INF 1008611
using namespace std;

int K,N;
int a[MAX_N][MAX_N];
struct edge{int to,cap,cost,rev;};

int V=0;
vector<edge> G[MAX_V];
int dist[MAX_V];
int prevv[MAX_V],preve[MAX_V];

void add_edge(int from,int to,int cap,int cost)
{
    G[from].push_back((edge){to,cap,cost,G[to].size()});
    G[to].push_back((edge){from,0,-cost,G[from].size()-1});
}
char cc;
int min_cost_flow(int s,int t,int f)
{
    int res=0;
    while(f>0)
    {
        fill(dist,dist+V,INF);
        dist[s]=0;
        bool update=1;
        while(update)
        {
            update=0;
            for(int v=0;v<V;v++)
            {
                if(dist[v]==INF)continue;
                for(int i=0;i<G[v].size();i++)
                {
                    edge &e=G[v][i];
                    if(e.cap>0&&dist[e.to]>dist[v]+e.cost)
                    {
                        //cout<<"*"<<endl;
                        dist[e.to]=dist[v]+e.cost;
                        prevv[e.to]=v;
                        preve[e.to]=i;
                        update=1;
                    }
                }
            }
        }
        if(dist[t]==INF)
            return -1;

        int d=f;
        for(int v=t;v!=s;v=prevv[v])
            d=min(d,G[prevv[v]][preve[v]].cap);
        f-=d;
        res+=d*dist[t];
        for(int v=t;v!=s;v=prevv[v])
        {
            edge &e=G[prevv[v]][preve[v]];
            e.cap-=d;
            G[v][e.rev].cap+=d;
        }
    }
    return res;
}

int main()
{
    cin>>N>>K;
    for(int i=0;i<N;i++)
        for(int j=0;j<N;j++)
            cin>>a[i][j];
    V=N*N*2+1;
    for(int i=0;i<N;i++)
        for(int j=0;j<N;j++)
        {
            int v=(i*N+j)*2;
            int u=v+1;
            add_edge(v,u,1,-a[i][j]);
            add_edge(v,u,INF,0);
            if(i!=N-1)
                add_edge(u,((i+1)*N+j)*2,INF,0);
            if(j!=N-1)
                add_edge(u,u+1,INF,0);
            add_edge(u,V-1,INF,0);
        }
    cout<<-min_cost_flow(0,V-1,K)<<endl;
    return 0;
}
时间: 2024-10-08 06:22:07

CODEVS_1227 方格取数2 网络流 最小费用流 拆点的相关文章

NEU 1458 方格取数(网络流之费用流)

题目地址:NEU 1458 跟杭电上的那两个方格取数不太一样..这个可以重复,但是取和的时候只能加一次.建图思路基本一会就出来.同样的拆点,只不过这题需要再拆个边,其中一条费用0,另一条费用为那个点处的值.流量都限制为1.然后剩下的都跟杭电上的那两个差不多了.因为把数组开小了WA了好几发..(我前面居然还专门检查了一下数组大小,居然当时还认为没开小...对自己无语..) 代码如下: #include <iostream> #include <stdio.h> #include &l

hdu 1569 方格取数(2) 网络流 最大点权独立集

方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 5146    Accepted Submission(s): 1610 Problem Description 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的

P2774 方格取数问题 网络流

题目: P2774 方格取数问题 题目背景 none! 题目描述 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.对于给定的方格棋盘,按照取数要求编程找出总和最大的数. 输入输出格式 输入格式: 第 1 行有 2 个正整数 m 和 n,分别表示棋盘的行数和列数.接下来的 m 行,每行有 n 个正整数,表示棋盘方格中的数. 输出格式: 程序运行结束时,将取数的最大总和输出 输入输出样

P2774 方格取数问题 网络流重温

P2774 方格取数问题 这个题目之前写过一次,现在重温还是感觉有点难,可能之前没有理解透彻. 这个题目要求取一定数量的数,并且这些数在方格里面不能相邻,问取完数之后和最大是多少. 这个很好的用了网络流的最大独立集. 根据位置把这些数分成了两个独立集,两个独立集的意思是这两个集合之间有关系,但是集合内部没有任何关系, 所以是两个独立集. 分成独立集之后,我们就要建图连边,这些都很好做,但是为什么答案就是  所有数之和-最小割 因为当我们跑一次最小割之和是不是让这个图没有连接了,也就是这个图不是联

hdu 1565 方格取数(2)(网络流之最大点权独立集)

题目链接:hdu 1565 方格取数(2) 题意: 有一个n*m的方格,每个方格有一个数,现在让你选一些数.使得和最大. 选的数不能有相邻的. 题解: 我们知道对于普通二分图来说,最大独立点集 + 最小点覆盖集 = 总点数,类似的,对于有权的二分图来说,有: 最大点权独立集 + 最小点权覆盖集 = 总点权和, 这个题很明显是要求 最大点权独立集 ,现在 总点权 已知,我们只要求出来 最小点权覆盖集 就好了,我们可以这样建图, 1,对矩阵中的点进行黑白着色(相邻的点颜色不同),从源点向黑色的点连一

HDU 1565 &amp;&amp; HDU 1569 方格取数 (网络流之最小割)

题目地址:HDU 1565       HDU 1569 刚开始接触最小割,就已经感受到了最小割的博大精深... 这建图思路倒是好想..因为好多这种关于不相邻的这种网络流都是基本都是这样建图.但是感觉毫无道理可言...看了题解后才明白这样做的意义. 下面是题解中的说法. 大概是这样分析的,题义是要我们求在一个方格内取出N个点,使得这N个独立的(不相邻)点集的和最大.我们可以将问题转化为最小割来求解.首先,我们将方格进行黑白相间的染色,然后再将任意一种颜色(黑色)作为源点,一种颜色(白色)作为汇点

hdu 1569 方格取数(2) (网络流)

题意:给出一个n*m的矩阵,求选出若干个互不不相邻 的数,使得和最大 分析:刘汝佳白书给出求带权二分图的最大独立集解法.即每个节点有一个权值,要求选出一些节点,互不相邻,且权值最大 加入一个源点s和一个汇点t,使得s向其中一个集合的点连一条边,容量为该点的权值,另一部分的点向t连一条边,容量为该点的权值,原来的边容量为INF,求图的一个割,将割对应的边删掉就是要求的解,权和为所有权减去割的容量 #include<bits/stdc++.h> using namespace std; const

【网络流】hdu 1569 方格取数(2)

/* 和1565一样: 总点数的权 - 最小覆盖点集 = 最大独立集 -------------------------------------- void add(int u, int v, int f)加边 { e[ct].u = u; e[ct].v = v; e[ct].f = f; next[ct] = first[u]; first[u] = ct++; e[ct].u = v; e[ct].v = u; e[ct].f = 0; next[ct] = first[v]; first

XTU 二分图和网络流 练习题 C. 方格取数(1)

C. 方格取数(1) Time Limit: 5000ms Memory Limit: 32768KB 64-bit integer IO format: %I64d      Java class name: Main 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的和最大. Input 包括多个测试实例,每个测试实例包括一个整数n 和n*n个非负数(n<=20) Output 对