word2vec 中的数学原理具体解释(三)背景知识

      
    word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单、高效,因此引起了非常多人的关注。因为 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上添加了这个工具包的神奇感。一些按捺不住的人于是选择了通过解剖源码的方式来一窥到底,出于好奇,我也成为了他们中的一员。读完代码后,认为收获颇多,整理成文,给有须要的朋友參考。

相关链接

(一)文件夹和前言

(二)预备知识

(三)背景知识

(四)基于 Hierarchical Softmax 的模型

(五)基于 Negative Sampling 的模型

(六)若干源代码细节

作者: peghoty

出处: http://blog.csdn.net/itplus/article/details/37969817

欢迎转载/分享, 但请务必声明文章出处.

word2vec 中的数学原理具体解释(三)背景知识

时间: 2024-10-28 14:45:30

word2vec 中的数学原理具体解释(三)背景知识的相关文章

word2vec 中的数学原理具体解释(四)基于 Hierarchical Softmax 的模型

  word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了非常多人的关注.因为 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上添加了这个工具包的神奇感.一些按捺不住的人于是选择了通过解剖源码的方式来一窥到底,出于好奇,我也成为了他们中的一员.读完代码后.认为收获颇多.整理成文,给有须要的朋友參考. 相关链接 (一)文件夹和前言 (二)预备

word2vec 中的数学原理具体解释(五)基于 Negative Sampling 的模型

  word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了非常多人的关注. 因为 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上添加了这个工具包的神奇感.一些按捺不住的人于是选择了通过解剖源码的方式来一窥到底,出于好奇,我也成为了他们中的一员. 读完代码后,认为收获颇多,整理成文,给有须要的朋友參考. 相关链接 (一)文件夹和前言 (二)

word2vec 中的数学原理具体解释(六)若干源代码细节

  word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了非常多人的关注.因为 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上添加了这个工具包的神奇感. 一些按捺不住的人于是选择了通过解剖源码的方式来一窥到底,出于好奇,我也成为了他们中的一员. 读完代码后.认为收获颇多,整理成文,给有须要的朋友參考. 相关链接 (一)文件夹和前言 (二)

图像处理中的数学原理具体解释21——PCA实例与图像编码

欢迎关注我的博客专栏"图像处理中的数学原理具体解释" 全文文件夹请见 图像处理中的数学原理具体解释(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 假设你对PCA的推导和概念还不是非常清楚.建议阅读本文的前导文章 http://blog.csdn.net/baimafujinji/article/details/50372906 6.4.3 主成分变换的实现 本小节通过一个算例验证一下之前的推导.在前面给出的

word2vec 中的数学原理详解

word2vec 中的数学原理详解 word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了很多人的关注.由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包的神秘感.一些按捺不住的人于是选择了通过解剖源代码的方式来一窥究竟. 第一次接触 word2vec 是 2013 年的 10 月份,当时读了复旦大学郑骁庆老师发表的论文

word2vec 中的数学原理二 预备知识 霍夫曼树

主要参考:    word2vec 中的数学原理详解                 自己动手写 word2vec 编码的话,根是不记录在编码中的 这一篇主要讲的就是霍夫曼树(最优二叉树)和编码.  参考   快速画出哈夫曼树 / 霍夫曼树 / 最优树   了解其构成.    哈夫曼树及 python 实现 python 代码 构建霍夫曼树 ,获得霍夫曼编码    简单实现: #节点类 class Node(object): def __init__(self,name=None,value=N

word2vec 中的数学原理详解(三)背景知识

  word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了很多人的关注.由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包的神秘感.一些按捺不住的人于是选择了通过解剖源代码的方式来一窥究竟,出于好奇,我也成为了他们中的一员.读完代码后,觉得收获颇多,整理成文,给有需要的朋友参考. 相关链接 (一)目录和前言 (二)预备知

word2vec 中的数学原理详解(一)目录和前言

  word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了很多人的关注.由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包的神秘感.一些按捺不住的人于是选择了通过解剖源代码的方式来一窥究竟,出于好奇,我也成为了他们中的一员.读完代码后,觉得收获颇多,整理成文,给有需要的朋友参考. 相关链接 (一)目录和前言 (二)预备知

word2vec 中的数学原理详解(二)预备知识

  word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了很多人的关注.由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包的神秘感.一些按捺不住的人于是选择了通过解剖源代码的方式来一窥究竟,出于好奇,我也成为了他们中的一员.读完代码后,觉得收获颇多,整理成文,给有需要的朋友参考. 相关链接 (一)目录和前言 (二)预备知