算法导论:回文子串(Manacher)算法 ,O(n)时间效率实现

问题描述:

输入一个字符串,求出其中最大的回文子串。子串的含义是:在原串中连续出现的字符串片段。回文的含义是:正着看和倒着看相同,如abba和yyxyy。

解析:

这里介绍O(n)回文子串(Manacher)算法

算法基本要点:首先用一个非常巧妙的方式,将所有可能的奇数/偶数长度的回文子串都转换成了奇数长度:

在每个字符的两边都插入一个特殊的符号。比如 abba 变成 #a#b#b#a#, aba变成 #a#b#a#。

为了进一步减少编码的复杂度,可以在字符串的开始加入另一个特殊字符,这样就不用特殊处理越界问题,比如$#a#b#a#。

下面以字符串12212321为例,经过上一步,变成了 S[] = "$#1#2#2#1#2#3#2#1#";

然后用一个数组 P[i] 来记录以字符S[i]为中心的最长回文子串向左/右扩张的长度(包括S[i]),比如S和P的对应关系:

S     #  1  #  2  #  2  #  1  #  2  #  3  #  2  #  1  #

P     1  2  1  2  5  2  1  4  1  2  1  6  1  2  1  2  1

(p.s. 可以看出,P[i]-1正好是原字符串中回文串的总长度)

下面计算P[i],该算法增加两个辅助变量id和mx,其中id表示最大回文子串中心的位置,mx则为id+P[id],也就是最大回文子串的边界。

这个算法的关键点就在这里了:如果mx > i,那么P[i] >= MIN(P[2 * id - i], mx - i)。

具体代码如下:

if(mx > i)
{
      p[i] = (p[2*id - i] < (mx - i) ? p[2*id - i] : (mx - i));
}
else
{
       p[i] = 1;
}

当 mx - i > P[j] 的时候,以S[j]为中心的回文子串包含在以S[id]为中心的回文子串中,由于 i 和 j 对称,以S[i]为中心的回文子串必然包含在以S[id]为中心的回文子串中,所以必有 P[i] = P[j],见下图。

当 P[j] > mx - i 的时候,以S[j]为中心的回文子串不完全包含于以S[id]为中心的回文子串中,但是基于对称性可知,下图中两个绿框所包围的部分是相同的,也就是说以S[i]为中心的回文子串,其向右至少会扩张到mx的位置,也就是说 P[i] >= mx - i。至于mx之后的部分是否对称,就只能一个一个匹配了。

对于 mx <= i 的情况,无法对 P[i]做更多的假设,只能P[i] = 1,然后再去匹配了

下面给出原文,进一步解释算法为线性的原因

源代码:

#include <iostream>
#include <string>
#include <cstring>

using namespace std;

void findBMstr(string& str)
{
    int *p = new int[str.size() + 1];
    memset(p, 0, sizeof(p));

    int mx = 0, id = 0;
    for(int i = 1; i <=  str.size(); i++)
    {
        if(mx > i)
        {
            p[i] = (p[2*id - i] < (mx - i) ? p[2*id - i] : (mx - i));
        }
        else
        {
            p[i] = 1;
        }

        while(str[i - p[i]] == str[i + p[i]])
            p[i]++;

        if(i + p[i] > mx)
        {
            mx = i + p[i];
            id = i;
        }

    }
    int max = 0, ii;
    for(int i = 1; i < str.size(); i++)
    {
        if(p[i] > max)
        {
            ii = i;
            max = p[i];
        }
    }

    max--;

    int start = ii - max ;
    int end = ii + max;
    for(int i = start; i <= end; i++)
    {
        if(str[i] != '#')
        {
            cout << str[i];
        }
    }
    cout << endl;

    delete  p;
}

int main()
{
    string str = "12212321";
    string str0;
    str0 += "$#";
    for(int i = 0; i < str.size(); i++)
    {
        str0 += str[i];
        str0 += "#";
    }

    cout << str0 << endl;
    findBMstr(str0);
    return 0;
}

执行结果:

时间: 2024-10-07 18:17:51

算法导论:回文子串(Manacher)算法 ,O(n)时间效率实现的相关文章

HiHo 1032 最长回文子串 (Manacher算法求解)

Manacher算法o(n)求解最长回文子串问题 非常巧妙 #include<bits/stdc++.h> using namespace std; char str[2000020],s[2000020]; int p[2000020]; int len,id,mx; void pre() //对字符串进行预处理 { len=strlen(s); str[0]='$'; str[1]='#'; for(int i=0;i<len;i++) { str[i*2+2]=s[i]; str[

hiho#1032 : 最长回文子串 (manacher算法O(n)时间求字符串的最长回文子串 )

#1032 : 最长回文子串 时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在编程的学习道路上一同前进. 这一天,他们遇到了一连串的字符串,于是小Hi就向小Ho提出了那个经典的问题:"小Ho,你能不能分别在这些字符串中找到它们每一个的最长回文子串呢?" 小Ho奇怪的问道:"什么叫做最长回文子串呢?" 小Hi回答道:"一个字符串中连续的一

最长回文子串Manacher算法模板

Manacher算法能够在O(N)的时间复杂度内得到一个字符串以任意位置为中心的回文子串.其算法的基本原理就是利用已知回文串的左半部分来推导右半部分. 例题:HDU 3068 1 #include<stdio.h> 2 #include<string.h> 3 #include<iostream> 4 using namespace std; 5 const int N=110005; 6 char s[N],cpy[N<<1]; 7 int rad[N&l

hihoCoder #1032 : 最长回文子串 [ Manacher算法--O(n)回文子串算法 ]

传送门 #1032 : 最长回文子串 时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在编程的学习道路上一同前进. 这一天,他们遇到了一连串的字符串,于是小Hi就向小Ho提出了那个经典的问题:“小Ho,你能不能分别在这些字符串中找到它们每一个的最长回文子串呢?” 小Ho奇怪的问道:“什么叫做最长回文子串呢?” 小Hi回答道:“一个字符串中连续的一段就是这个字符串的子串,而回文串

最长回文子串 - Manacher算法

算法思想: 设有字符串s[] = "121" 第一步:通过在每个字符左右都添加一个特殊字符,把奇数长度和偶数长度的字符串都转化成奇数(例如. "121" 加上特殊字符后变成"#1#2#1" ),同时也可在开头再加一个特殊字符,以便于忽略越界问题(如上例"121"变成"$#1#2#1#"  此时开头的特殊字符$和字符串末尾的\0与此串中其他字符都不同,即可忽略越界问题),此时字符串变成 s[] = "

求最长回文子串——Manacher算法

回文串包括奇数长的和偶数长的,一般求的时候都要分情况讨论,这个算法做了个简单的处理把奇偶情况统一了.算法的基本思路是这样的,把原串每个字符中间用一个串中没出现过的字符分隔开来(统一奇偶),用一个数组p[ i ]记录以 str[ i ] 为中间字符的回文串向右能匹配的长度.先看个例子 原串:       w  a   a   b   w   s   w   f   d 新串(str):  #   w  #   a   #   a   #   b  #   w   #   s    #   w   

hihocoder1032(最长回文子串manacher算法)

题目连接:点击打开链接 解题思路: manacher算法的模板题. 完整代码: #include <algorithm> #include <iostream> #include <cstring> #include <complex> #include <cstdio> #include <string> #include <cmath> #include <queue> using namespace st

HDU3068(最长回文子串manacher算法)

题目连接:点击打开链接 解题思路: manacher算法模板题. 完整代码: #include <algorithm> #include <iostream> #include <cstring> #include <complex> #include <cstdio> #include <string> #include <cmath> #include <queue> using namespace std

5. Longest Palindromic Substring(最长回文子串 manacher 算法)

Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Ou

Girls&#39; research---hdu3294(回文子串manacher)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3294 给出一个字符串和加密的字符规律 例如 c abcba c代表把串中的c改成a,d改成b... b改成z,a改成y... 即上串是yzazy,然后求出它的最长回文子串, 并记录子串的开始下标和结束下标就行了: #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; con