配置OSPF负载分担

组网需求:

OSPF网络中有四台交换机,同属于区域0。要求配置负载分担,使得SwitchA流量,可以分别通过SwitchB和SwitchC送到SwitchD。

拓扑:

配置思路

采用如下的思路配置OSPF的负载分担:

  1. 在各交换机上配置OSPF基本功能,实现OSPF网络的基本互通。
  2. 在SwitchA配置负载分担,实现负载均衡的目的。

操作步骤

  • 配置各接口所属VLAN

# 配置SwitchA。SwitchB、SwitchC和SwitchD的配置与SwitchA类似

<HUAWEI> system-view
[HUAWEI] sysname SwitchA
[SwitchA] vlan batch 10 20 50
[SwitchA] interface gigabitethernet 1/0/1
[SwitchA-GigabitEthernet1/0/1] port link-type trunk
[SwitchA-GigabitEthernet1/0/1] port trunk allow-pass vlan 10
[SwitchA-GigabitEthernet1/0/1] quit
[SwitchA] interface gigabitethernet 1/0/2
[SwitchA-GigabitEthernet1/0/2] port link-type trunk
[SwitchA-GigabitEthernet1/0/2] port trunk allow-pass vlan 20
[SwitchA-GigabitEthernet1/0/2] quit
[SwitchA] interface gigabitethernet 1/0/3
[SwitchA-GigabitEthernet1/0/3] port link-type trunk
[SwitchA-GigabitEthernet1/0/3] port trunk allow-pass vlan 50
[SwitchA-GigabitEthernet1/0/3] quit

  • 配置各VLANIF接口的IP地址

# 配置SwitchA。SwitchB、SwitchC和SwitchD的配置与SwitchA类似。

[SwitchA] interface vlanif 10
[SwitchA-Vlanif10] ip address 10.1.1.1 24
[SwitchA-Vlanif10] quit
[SwitchA] interface vlanif 20
[SwitchA-Vlanif20] ip address 10.1.2.1 24
[SwitchA-Vlanif20] quit
[SwitchA] interface vlanif 50
[SwitchA-Vlanif50] ip address 172.16.1.1 24
[SwitchA-Vlanif50] quit

  • 配置OSPF基本功能

# 配置SwitchA。

[SwitchA] ospf 1 router-id 10.10.10.1
[SwitchA-ospf-1] area 0
[SwitchA-ospf-1-area-0.0.0.0] network 172.16.1.0 0.0.0.255
[SwitchA-ospf-1-area-0.0.0.0] network 10.1.1.0 0.0.0.255
[SwitchA-ospf-1-area-0.0.0.0] network 10.1.2.0 0.0.0.255
[SwitchA-ospf-1-area-0.0.0.0] quit
[SwitchA-ospf-1] quit

# 配置SwitchB。

[SwitchB] ospf 1 router-id 10.10.10.2
[SwitchB-ospf-1] area 0
[SwitchB-ospf-1-area-0.0.0.0] network 10.1.1.0 0.0.0.255
[SwitchB-ospf-1-area-0.0.0.0] network 192.168.0.0 0.0.0.255
[SwitchB-ospf-1-area-0.0.0.0] quit
[SwitchB-ospf-1] quit

# 配置SwitchC。

[SwitchC] ospf 1 router-id 10.10.10.3
[SwitchC-ospf-1] area 0
[SwitchC-ospf-1-area-0.0.0.0] network 10.1.2.0 0.0.0.255
[SwitchC-ospf-1-area-0.0.0.0] network 192.168.1.0 0.0.0.255
[SwitchC-ospf-1-area-0.0.0.0] quit
[SwitchC-ospf-1] quit

# 配置SwitchD。

[SwitchD] ospf 1 router-id 10.10.10.4
[SwitchD-ospf-1] area 0
[SwitchD-ospf-1-area-0.0.0.0] network 192.168.0.0 0.0.0.255
[SwitchD-ospf-1-area-0.0.0.0] network 192.168.1.0 0.0.0.255
[SwitchD-ospf-1-area-0.0.0.0] network 172.17.1.0 0.0.0.255
[SwitchD-ospf-1-area-0.0.0.0] quit
[SwitchD-ospf-1] quit

# 查看SwitchA的路由表。

[SwitchA] display ip routing-table
Route Flags: R - relay, D - download to fib
------------------------------------------------------------------------------
Routing Tables: Public
         Destinations : 11       Routes : 12

Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface

10.1.1.0/24  Direct  0    0           D   10.1.1.1        Vlanif10
       10.1.1.1/32  Direct  0    0           D   127.0.0.1       Vlanif10
       10.1.2.0/24  Direct  0    0           D   10.1.2.1        Vlanif20
       10.1.2.1/32  Direct  0    0           D   127.0.0.1       Vlanif20
      127.0.0.0/8   Direct  0    0           D   127.0.0.1       InLoopBack0
      127.0.0.1/32  Direct  0    0           D   127.0.0.1       InLoopBack0
     172.16.1.0/24  Direct  0    0           D   172.16.1.1      Vlanif50
     172.16.1.1/32  Direct  0    0           D   127.0.0.1       Vlanif50
     172.17.1.0/24  OSPF    10   3           D   10.1.1.2        Vlanif10
                    OSPF    10   3           D   10.1.2.2        Vlanif20
    192.168.0.0/24  OSPF    10   2           D   10.1.1.2        Vlanif10
    192.168.1.0/24  OSPF    10   2           D   10.1.2.2        Vlanif20

从路由表可以看出,由于最大等价路由条数的缺省值为16,因此SwitchA的两个下一跳10.1.1.2(SwitchB)和10.1.2.2(SwitchC)均成为有效路由。

  • 在SwitchA上配置等价路由优先级

如果不希望SwitchB和SwitchC形成负载分担,可以配置等价路由优先级,指定下一跳。

[SwitchA] ospf 1
[SwitchA-ospf-1] nexthop 10.1.2.2 weight 1
[SwitchA-ospf-1] quit

# 查看SwitchA的路由表

[SwitchA] display ip routing-table
Route Flags: R - relay, D - download to fib
------------------------------------------------------------------------------
Routing Tables: Public
         Destinations : 11       Routes : 11

Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface

10.1.1.0/24  Direct  0    0           D   10.1.1.1        Vlanif10
       10.1.1.1/32  Direct  0    0           D   127.0.0.1       Vlanif10
       10.1.2.0/24  Direct  0    0           D   10.1.2.1        Vlanif20
       10.1.2.1/32  Direct  0    0           D   127.0.0.1       Vlanif20
      127.0.0.0/8   Direct  0    0           D   127.0.0.1       InLoopBack0
      127.0.0.1/32  Direct  0    0           D   127.0.0.1       InLoopBack0
     172.16.1.0/24  Direct  0    0           D   172.16.1.1      Vlanif50
     172.16.1.1/32  Direct  0    0           D   127.0.0.1       Vlanif50
     172.17.1.0/24  OSPF    10   3           D   10.1.2.2        Vlanif20
    192.168.0.0/24  OSPF    10   2           D   10.1.1.2        Vlanif10
    192.168.1.0/24  OSPF    10   2           D   10.1.2.2        Vlanif20

从路由表中可以看出,当配置等价路由的优先级后,由于下一跳为10.1.2.2(SwitchC)的优先级(权值为1)高于下一跳为10.1.1.2(SwitchB)的优先级,所以OSPF优先选择下一跳为10.1.2.2为唯一最优路由。

时间: 2024-08-26 00:14:19

配置OSPF负载分担的相关文章

配置OSPF负载分担示例

?微信公众号:网络民工 组网图形 图1 配置OSPF负载分担组网图 OSPF负载分担简介 等价负载分担ECMP(Equal-CostMultiple Path),是指在两个网络节点之间同时存在多条路径时,节点间的流量在多条路径上平均分摊.负载分担的作用是减轻每条路径的流量压力,增强网络健壮性.当到达同一目的地存在同一路由协议发现的多条路由时,且这几条路由的开销值也相同,那么就满足负载分担的条件.当实现负载分担时,路由器根据五元组(源地址.目的地址.源端口.目的端口.协议)进行转发,当五元组相同时

HCNA配置手工负载分担模式链路聚合

一.配置手工负载分担模式链路聚合 1.手工负载分担模式链路聚合配置场景 当需要增加两台设备之间的带宽或可靠性,而两台设备中有一台不支持LACP协议时,可在Switch设备上创建手工负载分担模式的Eth-Trunk,并加入多个成员接口增加设备间的带宽及可靠性 2.步骤 2.1 配置Eth-Trunk工作模式为手工负载分担模式 执行命令system-view,进入系统视图. 执行命令interface eth-trunk trunk-id,进入Eth-Trunk接口视图. 执行命令mode manu

双链路的负载分担2——MSTP+VRRP+OSPF

网络拓扑: eNSP模拟器实验拓扑: 网络地址规划:vlan2:10.147.140.0/26  Gateway: 10.147.140.62 vlan3: 10.147.140.64/26 Gateway: 10.147.140.126 vlan4: 10.147.140.128/26 Gateway: 10.147.140.190 vlan5: 10.147.140.192/26 Gateway: 10.147.140.254 路由地址规划: vlan10: 10.147.141.128/3

双链路负载分担——MSTP+VRRP+OSPF

网络拓扑如图所示: 网络地址规划:vlan 2 10.147.140.0/26 vlan 3 10.147.140.64/26  用于行政楼段: vlan 4 10.147.140.128/26 vlan 5 10.147.140.192/26 用于中控楼段: vlan 10 10.147.141.0/30 vlan 11 10.147.141.4/30 vlan 12 10.147.141.8/30 vlan 13 10.147.141.12/30 用于核心交换机到路由器互联网段. 网络协议使

菱形组网之BGP MED、负载分担及GR篇

菱形组网之BGP MED.负载分担及GR篇 BGP选路规则 1.     MED.RouterID(<)和负载分担 到达同一目的地的多条路由,选择最优路由,下发到IP路由表 在PE1查看路由表 [PE1]dis ip routing-table Route Flags: R - relay, D - download to fib ------------------------------------------------------------------------------ Rout

HCNA——负载分担、路由备份

HCNA--负载分担.路由备份 实验拓扑图 根据上图所给的参数进行配置 4台PC互通需配置双向路由表 这里我就不再演示了 直接开始实验 实验开始 负载分担 从PC1 ping PC4 是不是第一个数据包走红色的路由 第二个的数据包走蓝色的路由呢? PS:当然不是这样子的 负载分担有一个叫 "逐流" 什么是流?流就是源IP源端口 目的IP目的端口 当这四个和前面的流一样的时候 第一个数据包走的是红色路由 那么同一个流的数据包都会走相同的路由 由于在eNSP模拟器中看不到这样的过程 所以简

静态路由实现路由负载分担

静态路由简介 扫描二维码关注微信公众号:网络民工 获取更多内容静态路由是一种需要管理员手工配置的特殊路由.静态路由比动态路由使用更少的带宽,并且不占用CPU资源来计算和更新路由.但是当网络发生故障或者拓扑发生变化后,静态路由不会自动更新,必须手动重新配置.静态路由有5个主要的参数:目的地址和掩码.出接口和下一跳.优先级. 使用静态路由的好处是配置简单.可控性高,当网络结构比较简单时,只需配置静态路由就可以使网络正常工作.在复杂网络环境中,还可以通过配置静态路由改进网络的性能,并且可以为重要的应用

劳动节配置F5负载均衡配置小结

2014年5月1日是劳动节,是劳动人民应该休息的节日,呵呵结果这几天却是作死的节奏,天天加班到2点半,真实很辛苦呀,整个过程很艰辛但是结果是好的. 1.配置LC1600链路负载均衡,首先要激活license的.在system-license-Re activacte 2.要创建VLAN,由于是联通线路.电信线路和下行线路,就创建vlan_cnc vlan_ctc vlan1,每个vlan要设置对应的端口,比如vlan_cnc对应光纤口2.1 3.创建完vlan 要写selfip即每个vlan的地

Window 2008 IIS配置LVS负载均衡一

      LVS是Linux Virtual Server的简写,意即Linux虚拟服务器,是一个虚拟的服务器集群系统.本项目在1998年5月由章文嵩博士成立,是中国国内最早出现的自由软件项目之一.承载于 IIS 的 WCF 服务的项目采用LVS + KEEPALIVED + WINDOWS SERVER 2008 R2 的方式实现高可用负载均衡. 1.设置 Windows Loopback Adapter 以上就是配置好了我们的lvs 网卡. 2.修改客户端网卡接口.环回接口连接模式 以管理