MySQL系列:innodb源代码分析之内存管理

在innodb中实现了自己的内存池系统和内存堆分配系统,在innodb的内存管理系统中,大致分为三个部分:基础的内存块分配管理、内存伙伴分配器和内存堆分配器。innodb定义和实现内存池的主要目的是提供内存的使用率和效率,防止内存碎片和内存分配跟踪和调试。我们先来看看他们的关系和结构。

下面是它的关系结构图:

上图中的:

ut_mem_block块是基础内存管理

Buddy allocator是内存伙伴分配器

mem_heap是内存堆分配器

1.基础内存管理

innodb中的内存分配和内存释放是通过统一的结构进行管理,详细的实如今ut0mem.h和ut0mem.c其中。其中最重要的就是对malloc和free的封装。

通过一个链表结构体来管理已经分配的内存。结构体例如以下:

 typedef ut_mem_block_struct
 {
            ulint        size;                                   /*这个被分配block的内存大小*/
            ulint        magic_n;                                /*节点魔法字,用于校验所用*/
            UT_LIST_NODE_T(ut_mem_block_t) mem_block_list;       /*block list node,指定prev node和next node*/
  };

关于block的list定义是个全局的变量。UT_LIST_BASE_NODE_T(ut_mem_block_t)
ut_mem_block_list;全部分配的block都会增加到这个list其中。

在ut_malloc_low函数分配内存的时候会将分配的block增加到list其中。在ut_free的时候会所释放的内存所在的block从list其中删除。

除了这两个函数以外,innodb还提供ut_free_all_mem函数来释放全部分配的block和统计分配内存的总数ut_total_allocated_memory功能。

基础内存管理的方法例如以下:

ut_malloc_low                    分配一个n长度的内存块,并将分配的块记录到ut_mem_block_list其中.

ut_malloc                            与ut_malloc_low功能同样,可是会用0初始化所分配的内存。

ut_free                                释放一个分配的内存块,并将其从ut_mem_block_list其中删除。

ut_free_all_mem                 释放ut_mem_block_list全部的内存块并清空ut_mem_block_list

以上函数是支持多线程并发操作的。也就是说是线程安全的。

innodb这样做的目的是保证全部malloc出去的内存都在 ut_mem_block_list其中,以便管理。

基础内存管理的结构例如以下:

2.伙伴分配器

innodb的伙伴分配器是基于ut_malloc_low函数之上的内存管理器,在创建伙伴分配器时,innodb会一下用ut_malloc_low开辟一个非常大的内存块,然后用伙伴分配来分配这个块的内存使用。

innodb的伙伴分配器是基于2的基数为基础的管理方式,其buddy alloc pool的定义例如以下:

   struct mem_pool_struct
    {
        byte*               buf;                          /*总体内存的句柄*/
        ulint                size;                        /*总体内存大小*/
        ulint                reserved;                    /*当前分配出去的总内存大小*/
        mutex             mutex;                          /*多线程相互排斥量*/
        UT_LIST_BASE_NODE_T(mem_area_t) free_list[64];    /*area_t链表数组,每一个数组单元能管理2的i次方内存块列表,i是数组的下标*/
    };
   struct mem_area_struct
    {
         ulint	size_and_free;                                        /*area的内存大小(一定是2的次方),最后一个bit表示是否已经释放*/
         UT_LIST_NODE_T(mem_area_t) free_list;       /*area链表的上下area,由于buddy area是会分裂的,有可能多个*/
     };

mem_area_t是一个buddy的内存区域。也就是mem_area_struct。

下面是一个32位机器管理1024字节内存块的buddy list分布:



watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVhbnJ4ZHU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" >

每个area是有mem_area_t头和可分配的内存(memory_buffer)确定的,memory_buffer的长度不小于mem_area_t头的长度,在32位机器上mem_area_t的头应该是16个字节(8字节对齐)。

2.1mem_area_t的分裂

在内存分配的过程中,有可能会造成mem_area_t的分裂。还是以上面的样例来说。增加我们要分配一个200字节的内存,这时候伙伴分配器的分配流程是这种:

1.找到一个离200+sizeof(mem_area_t)近期的2的i次方的数(256),确定i = 8。

2.在free_list[i]的列表中查找是否有空暇的node,假设有,将node职位no free.假设没有。对i + 1层运行查找是否有可用的内存。

3.在上面的样例中,i+1=9,free_list是空的,继续在i+2层找,一次类推。直到找到有node的层,也就是i = 10;

4.首先对10层进行分裂。分裂成两512大小的第9层节点,并从10删除area。在第9层增加2个512的node.

5.然后在对第9层的第一个节点进行分裂,分裂两个大小为256的第8层节点,并从第九层删除,在第8层增加2个节点。

6.将第一个256大小的area分配给相应的操作者,并置为no free标识。

下面是分配了一个200字节的内存池结构:

假设分配出去后的area_t会从free_list[i]链表中删除,也就是说在buddy上将是记录的。

2.2mem_area_t的合并

假设200字节分配出去后,使用完成会归还给buddy allocator,还是拿上面的样例来说。就会发生area合并的情况,过程例如以下:

1.使用者归还伙伴分配的内存,首先会依据area_t的信息去找到自己的buddy,也就是第8层另外一个没有被分配的area.

2.找到buddy area后。推断buddy area是否是释放状态,假设是,触发合并。将自己和buddy area从第8层删除,合并成一个512大小的第9层area,

3.在反复1 ~ 2步,又会将自己和第九层另外一个buddy area合并成一个1024大小的第10层area.

2.3buddy allocator的接口函数:

mem_pool_create                构建一个buddy allocator

mem_area_alloc                   用buddy allocator分配一块内存

mem_area_free                    将一块内存归还给buddy allocator

mem_pool_get_reserved      获得buddy allocator已经使用的内存大小

3内存分配堆(memory heap)

innodb中的内存管理终于的体现形式是mem_heap_t内存分配与管理,全部关于内存分配的操作都会调用mem_heap的API方法,mem_heap_t的结构定义例如以下:

struct mem_block_info_struct
{
     ulint	 magic_n;         /*魔法字*/
     char	 file_name[8];    /*分配内存的文件*/
     ulint	 line;            /*分配内存的文件所在行*/
     ulint	 len;             /*block的长度*/
     ulint	 type;            /*依赖的底层分配类型,有DYNAMIC、BUFFER、BTR_SEARCH三种类型*/
     ibool	 init_block;	 /*是否是外部分配的内存块*/

     ulint	 free;           /*被占用的空间大小*/
     ulint	 start;	         /*可分配内存的起始位置*/
     byte*	 free_block;     /*备用block,只在BTR_SEARCH方式可用*/

     UT_LIST_BASE_NODE_T(mem_block_t)	base;
     UT_LIST_NODE_T(mem_block_t)	 list;
};

备注:mem_block_info_struct/mem_block_info_t/mem_block_t/mem_heap_t是等价

mem_heap_t的内存结构例如以下:

关于mem_heap_t的几个要点:

1.一个mem_block_t最小空间不小于64字节,标准的大小是8KB,在非MEM_HEAP_BUFFER模式下分配的空间不大于page size - 200(page size一般为16KB)

2.mem_heap_t有三种类型,各自是DYNAMIC、BUFFER、BTR_SEARCH。在DYNAMIC模式下都是基于buddy allocator进行mem_block_t分配的。在BTR_SEARCH模式下,使用free_block来作为内存分配,在BUFFER模式下比較复杂。假设分配的内存大小< page size的一半时,使用buddy alloc,否则使用buf_frame的内存分配方式(这个是属于buf0buf.XX里面的方式。还未開始分析)。

3.mem_heap_t在分配新的mem_block_t的时候一定是分配一个heap最后节点大小的两倍,假设分配的大小超过MEM_MAX_ALLOC_IN_BUF(相当于一个page size)的时候,heap 类型推断,在不是DYNAMIC模式下。最大就是一个MEM_MAX_ALLOC_IN_BUF大小。假设其它模式下就是设置成MEM_BLOCK_STANDARD_SIZE标准大小。在这些限制外,假设须要分配的内存大于这些限制,以分配内存大小为准进行mem_block_t分配。分配好的mem_block_t总是增加到heap
base list的最后,也就是heap堆栈的顶端。

4.mem_heap_t在释放mem_block_t时候总是从顶端開始释放,直到不能释放为止(mem_block_t没有被使用者归还)。在mem_block_t释放的时候也是须要參考DYNAMIC、BUFFER、BTR_SEARCH类型进行相对于的归还规则(和2要点是相相应的)。

mem_heap_t函数方法说明:

mem_heap_create                                        用DYNAMIC模式创建一个mem_heap_t

mem_heap_create_in_buffer                        用BUFFER模式创建一个mem_heap_t

mem_heap_create_in_btr_search                 用BTR_SEARCH模式创建一个mem_heap_t

mem_heap_free                                            释放mem_heap_t对象

mem_alloc                                                    创建在MEM_HEAP_DYNAMIC模式下。并分配一块指定大小的内存(在这样的方式下mem_heap_t仅仅会有一个mem_block_t)

mem_free                                                      归还mem_heap_t分配的内存,并释放mem_heap_t

mem_heap_alloc                                           在指定的mem_heap_t上分配一块内存

mem_heap_get_heap_top                            获得heap顶端块可使用内存的地址

mem_heap_empty                                        清空指定的mem_heap_t

mem_heap_get_top                                     获得heap顶部的指定n大小的mem_block_t指针

mem_heap_free_top                                    释放heap顶部N大小的mem_block_t块

4总结

innodb提供内存池和heap分配方式来统一管理内存,最基本的目的是提高内存的率。

在MySQL-5.6的版本号中。innodb提供两种选择,一种是使用innodb提供的内存池管理内存,另一种是提供系统的malloc和free来作为内存管理。MySQL默认的是系统管理内存方式,一些有经验的DBA会使用系统的管理内存方式+TMalloc来做内存优化。借助TMalloc高效的内存管理方式实现MySQL的性能提升。

时间: 2024-10-31 14:09:18

MySQL系列:innodb源代码分析之内存管理的相关文章

MySQL系列:innodb引擎分析之内存管理

在innodb中实现了自己的内存池系统和内存堆分配系统,在innodb的内存管理系统中,大致分为三个部分:基础的内存块分配管理.内存伙伴分配器和内存堆分配器.innodb定义和实现内存池的主要目的是提供内存的使用率和效率,防止内存碎片和内存分配跟踪和调试.我们先来看看他们的关系和结构. 以下是它的关系结构图: 上图中的: ut_mem_block块是基础内存管理 Buddy allocator是内存伙伴分配器 mem_heap是内存堆分配器 1.基础内存管理 innodb中的内存分配和内存释放是

cocos2d-x 源代码分析 : Ref (CCObject) 源代码分析 cocos2d-x内存管理策略

从源代码版本号3.x.转载请注明 cocos2d-x 总的文件夹的源代码分析: http://blog.csdn.net/u011225840/article/details/31743129 1.Ref,AutoreleasePool.PoolManager Ref中包括了一个叫referenceCount的引用计数,当一个Ref类的变量被new的时候,其referenceCount的引用计数被置为1. 当中有三个重要的操作,retain.release,autorelease,以下源代码分析

redis 源代码分析(一) 内存管理

一,redis内存管理介绍 redis是一个基于内存的key-value的数据库,其内存管理是很重要的,为了屏蔽不同平台之间的差异,以及统计内存占用量等,redis对内存分配函数进行了一层封装,程序中统一使用zmalloc,zfree一系列函数,其相应的源代码在src/zmalloc.h和src/zmalloc.c两个文件里,源代码点这里. 二,redis内存管理源代码分析 redis封装是为了屏蔽底层平台的差异,同一时候方便自己实现相关的函数,我们能够通过src/zmalloc.h 文件里的相

cocos2d-x 源码分析 : Ref (CCObject) 源码分析 cocos2d-x内存管理策略

源码版本来自3.x,转载请注明 cocos2d-x 源码分析总目录: http://blog.csdn.net/u011225840/article/details/31743129 1.Ref,AutoreleasePool,PoolManager Ref中包含了一个叫referenceCount的引用计数,当一个Ref类的变量被new的时候,其referenceCount的引用计数被置为1. 其中有三个重要的操作,retain,release,autorelease,下面源码分析时会详细说明

Memcached源码分析之内存管理

先再说明一下,我本次分析的memcached版本是1.4.20,有些旧的版本关于内存管理的机制和数据结构与1.4.20有一定的差异(本文中会提到). 一)模型分析在开始解剖memcached关于内存管理的源代码之前,先宏观上分析一下memcached内存管理的模型是怎样子的: 提个建议,我觉得memcached内存管理的模型与我们平时做作业的作业本“画格子给我们往格子里面写字”的逻辑很像,一本本作业本就是我们的内存空间,而我们往里写的字就是我们要存下来的数据,所以分析的时候可以想像一下用方格作业

redis 源码分析(一) 内存管理

一,redis内存管理介绍 redis是一个基于内存的key-value的数据库,其内存管理是非常重要的,为了屏蔽不同平台之间的差异,以及统计内存占用量等,redis对内存分配函数进行了一层封装,程序中统一使用zmalloc,zfree一系列函数,其对应的源码在src/zmalloc.h和src/zmalloc.c两个文件中,源码点这里. 二,redis内存管理源码分析 redis封装是为了屏蔽底层平台的差异,同时方便自己实现相关的函数,我们可以通过src/zmalloc.h 文件中的相关宏定义

nginx源代码分析之内存池实现原理

建议看本文档时结合nginx源代码. 1.1   什么是内存池?为什么要引入内存池? 内存池实质上是接替OS进行内存管理.应用程序申请内存时不再与OS打交道.而是从内存池中申请内存或者释放内存到内存池.因此.内存池在实现的过程中,必定有一部分操作时从OS中申请内存.或者释放内存到OS.例如以下图所看到的: 图1 内存池的引入可有效解决两个问题: (1) 减少应用程序与OS之间进行频繁内存和释放的系统调用,进而减少程序执行期间在两个空间的切换,提升了程序执行效率: (2)内存池可依据应用特性组织内

redis源代码解读之内存管理————zmalloc文件

本文章主要记录本人在看redis源代码的一些理解和想法.由于功力有限,肯定会出现故障,所以.希望高手给出指正. 第一篇就是内存相关的介绍.由于我喜欢先看一些组件的东西,再看总体的流程. 先上一下代码吧 头文件 //主要提供内存分配和释放的基础功能 void *zmalloc(size_t size);//主要提供内存分配和释放的基础功能 void *zcalloc(size_t size); void *zrealloc(void *ptr, size_t size); void zfree(v

Magenta源代码笔记(3) —— 内存管理【转】

转自:http://blog.csdn.net/boymax2/article/details/52550197 版权声明:本文为博主原创文章,未经博主允许不得转载. Magenta内核支持虚拟地址的配置,依赖于cpu内的mmu模块. 下面会从以下几个方面对Magenta内核内存管理方面的代码进行分析: 1.mmu初始化,也就是硬件mmu的初始化,以底层寄存器操作为主,汇编 2.pmm初始化,也就是代码中物理内存结构的初始化 3.vmm初始化,也就是代码中虚拟内存结构的初始化 mmu初始化 mm