网易视频云:HBase – 存储文件HFile结构解析

网易视频云是网易推出的PAAS视频云服务,主要应用于在线教育、直播秀场、远程医疗、企业协作等领域。今天,网易视频云技术专家与大家分享一下:HBase – 存储文件HFile结构解析。

HFile是HBase存储数据的文件组织形式,参考BigTable的SSTable和Hadoop的TFile实现。从HBase开始到现在,HFile经历了三个版本,其中V2在0.92引入,V3在0.98引入。HFileV1版本的在实际使用过程中发现它占用内存多,HFile V2版本针对此进行了优化,HFile V3版本基本和V2版本相同,只是在cell层面添加了Tag数组的支持。鉴于此,本文主要针对V2版本进行分析,对V1和V3版本感兴趣的同学可以参考其他信息。

HFile逻辑结构

HFile V2的逻辑结构如下图所示:

文件主要分为四个部分:Scanned block section,Non-scanned block section,Opening-time data section和Trailer。

Scanned block section:顾名思义,表示顺序扫描HFile时所有的数据块将会被读取,包括Leaf Index Block和Bloom Block。

Non-scanned block section:表示在HFile顺序扫描的时候数据不会被读取,主要包括Meta Block和Intermediate Level Data Index Blocks两部分。

Load-on-open-section:这部分数据在HBase的region server启动时,需要加载到内存中。包括FileInfo、Bloom filter block、data block index和meta block index。

Trailer:这部分主要记录了HFile的基本信息、各个部分的偏移值和寻址信息。

HFile物理结构

如上图所示, HFile会被切分为多个大小相等的block块,每个block的大小可以在创建表列簇的时候通过参数blocksize => ‘65535’进行指定,默认为64k,大号的Block有利于顺序Scan,小号Block利于随机查询,因而需要权衡。而且所有block块都拥有相同的数据结构,如图左侧所示,HBase将block块抽象为一个统一的HFileBlock。HFileBlock支持两种类型,一种类型不支持checksum,一种不支持。为方便讲解,下图选用不支持checksum的HFileBlock内部结构:

上图所示HFileBlock主要包括两部分:BlockHeader和BlockData。其中BlockHeader主要存储block元数据,BlockData用来存储具体数据。block元数据中最核心的字段是BlockType字段,用来标示该block块的类型,HBase中定义了8种BlockType,每种BlockType对应的block都存储不同的数据内容,有的存储用户数据,有的存储索引数据,有的存储meta元数据。对于任意一种类型的HFileBlock,都拥有相同结构的BlockHeader,但是BlockData结构却不相同。下面通过一张表简单罗列最核心的几种BlockType,下文会详细针对每种BlockType进行详细的讲解:

HFile中Block块解析

上文从HFile的层面将文件切分成了多种类型的block,接下来针对几种重要block进行详细的介绍,因为篇幅的原因,索引相关的block不会在本文进行介绍,接下来会写一篇单独的文章对其进行分析和讲解。首先会介绍记录HFile基本信息的TrailerBlock,再介绍用户数据的实际存储块DataBlock,最后简单介绍布隆过滤器相关的block。

Trailer Block

主要记录了HFile的基本信息、各个部分的偏移值和寻址信息,下图为Trailer内存和磁盘中的数据结构,其中只显示了部分核心字段:

HFile在读取的时候首先会解析Trailer Block并加载到内存,然后再进一步加载LoadOnOpen区的数据,具体步骤如下:

1. 首先加载version版本信息,HBase中version包含majorVersion和minorVersion两部分,前者决定了HFile的主版本: V1、V2 还是V3;后者在主版本确定的基础上决定是否支持一些微小修正,比如是否支持checksum等。不同的版本决定了使用不同的Reader对象对HFile进行读取解析

2. 根据Version信息获取trailer的长度(不同version的trailer长度不同),再根据trailer长度加载整个HFileTrailer Block

3. 最后加载load-on-open部分到内存中,起始偏移地址是trailer中的LoadOnOpenDataOffset字段,load-on-open部分的结束偏移量为HFile长度减去Trailer长度,load-on-open部分主要包括索引树的根节点以及FileInfo两个重要模块,FileInfo是固定长度的块,它纪录了文件的一些Meta信息,例如:AVG_KEY_LEN, AVG_VALUE_LEN, LAST_KEY, COMPARATOR,
MAX_SEQ_ID_KEY等;索引树根节点放到下一篇文章进行介绍。

Data Block

DataBlock是HBase中数据存储的最小单元。DataBlock中主要存储用户的KeyValue数据(KeyValue后面一般会跟一个timestamp,图中未标出),而KeyValue结构是HBase存储的核心,每个数据都是以KeyValue结构在HBase中进行存储。KeyValue结构在内存和磁盘中可以表示为:

每个KeyValue都由4个部分构成,分别为key length,value length,key和value。其中key value和value length是两个固定长度的数值,而key是一个复杂的结构,首先是rowkey的长度,接着是rowkey,然后是ColumnFamily的长度,再是ColumnFamily,最后是时间戳和KeyType(keytype有四种类型,分别是Put、Delete、 DeleteColumn和DeleteFamily),value就没有那么复杂,就是一串纯粹的二进制数据。

BloomFilter Meta Block & Bloom Block

BloomFilter对于HBase的随机读性能至关重要,对于get操作以及部分scan操作可以剔除掉不会用到的HFile文件,减少实际IO次数,提高随机读性能。在此简单地介绍一下Bloom Filter的工作原理,Bloom Filter使用位数组来实现过滤,初始状态下位数组每一位都为0,如下图所示:

假如此时有一个集合S = {x1, x2, … xn},Bloom Filter使用k个独立的hash函数,分别将集合中的每一个元素映射到{1,…,m}的范围。对于任何一个元素,被映射到的数字作为对应的位数组的索引,该位会被置为1。比如元素x1被hash函数映射到数字8,那么位数组的第8位就会被置为1。下图中集合S只有两个元素x和y,分别被3个hash函数进行映射,映射到的位置分别为(0,2,6)和(4,7,10),对应的位会被置为1:

现在假如要判断另一个元素是否是在此集合中,只需要被这3个hash函数进行映射,查看对应的位置是否有0存在,如果有的话,表示此元素肯定不存在于这个集合,否则有可能存在。下图所示就表示z肯定不在集合{x,y}中:

HBase中每个HFile都有对应的位数组,KeyValue在写入HFile时会先经过几个hash函数的映射,映射后将对应的数组位改为1,get请求进来之后再进行hash映射,如果在对应数组位上存在0,说明该get请求查询的数据不在该HFile中。

HFile中的位数组就是上述Bloom Block中存储的值,可以想象,一个HFile文件越大,里面存储的KeyValue值越多,位数组就会相应越大。一旦太大就不适合直接加载到内存了,因此HFile V2在设计上将位数组进行了拆分,拆成了多个独立的位数组(根据Key进行拆分,一部分连续的Key使用一个位数组)。这样一个HFile中就会包含多个位数组,根据Key进行查询,首先会定位到具体的某个位数组,只需要加载此位数组到内存进行过滤即可,减少了内存开支。

在结构上每个位数组对应HFile中一个Bloom Block,为了方便根据Key定位具体需要加载哪个位数组,HFile V2又设计了对应的索引Bloom Index Block,对应的内存和逻辑结构图如下:

Bloom Index Block结构中totalByteSize表示位数组的bit数,numChunks表示Bloom Block的个数,hashCount表示hash函数的个数,hashType表示hash函数的类型,totalKeyCount表示bloom filter当前已经包含的key的数目,totalMaxKeys表示bloom filter当前最多包含的key的数目, Bloom Index Entry对应每一个bloom filter block的索引条目,作为索引分别指向’scanned
block section’部分的Bloom Block,Bloom Block中就存储了对应的位数组。

Bloom Index Entry的结构见上图左边所示,BlockOffset表示对应Bloom Block在HFile中的偏移量,FirstKey表示对应BloomBlock的第一个Key。根据上文所说,一次get请求进来,首先会根据key在所有的索引条目中进行二分查找,查找到对应的Bloom Index Entry,就可以定位到该key对应的位数组,加载到内存进行过滤判断。

总结

这篇小文首先从宏观的层面对HFile的逻辑结构和物理存储结构进行了讲解,并且将HFile从逻辑上分解为各种类型的Block,再接着从微观的视角分别对Trailer Block、Data Block在结构上进行了解析:通过对trailer block的解析,可以获取hfile的版本以及hfile中其他几个部分的偏移量,在读取的时候可以直接通过偏移量对其进行加载;而对data block的解析可以知道用户数据在hdfs中是如何实际存储的;最后通过介绍Bloom Filter的工作原理以及相关的Block块了解HFile中Bloom
Filter的存储结构。接下来会以本文为基础,再写一篇文章分析HFile中索引块的结构以及相应的索引机制。

Bloom Filter HBase HFile

如果您对我们的文章感兴趣,可以继续关注我们网易视频云官网(http://vcloud.163.com/)或者网易视频云官方微信(vcloud163)来交流哦!

时间: 2024-10-10 06:23:10

网易视频云:HBase – 存储文件HFile结构解析的相关文章

网易视频云:HBase —— RegionServer宕机案件侦查

今天网易视频云技术专家给大家分享一下HBase–RegionServer宕机案件侦查,欢迎参与讨论. 本来静谧的晚上,吃着葡萄干看着球赛,何等惬意.可偏偏一条报警短信如闪电一般打破了夜晚的宁静,线上集群一台RS宕了!于是倏地从床上坐起来,看了看监控,瞬间惊呆了:单台机器的读写吞吐量竟然达到了5w ops/sec!RS宕机是因为这么大的写入量造成的?如果真是这样,它是怎么造成的?如果不是这样,那又是什么原因?各种疑问瞬间从脑子里一一闪过,甭管那么多,先把日志备份一份,再把RS拉起来.接下来还是Bu

网易视频云技术分享:HBase - 建表语句解析

网易视频云的技术专家给大家分享一篇技术性文章:HBase - 建表语句解析. 像所有其他数据库一样,HBase也有表的概念,有表的地方就有建表语句,而且建表语句还很大程度上决定了这张表的存储形式.读写性能.比如我们熟悉的MySQL,建表语句中数据类型决定了数据的存储形式,主键.索引则很大程度上影响着数据的读写性能.虽然HBase没有主键.索引这些概念,但在HBase的世界里,有些东西和它们一样重要! 废话不说,直接奉上一条HBase建表语句,来为各位看官分解剖析: create 'NewsCli

网易视频云:HBase原理和设计

网易视频云是网易推出的视频云服务平台,为客户提供真正易用的视频云服务,全面的端到端解决方案,全程技术专家接入指导.下面,网易视频云的技术专家给大家分享一下:HBase原理和设计. 简介 HBase -- Hadoop Database的简称,Google BigTable的另一种开源实现方式,从问世之初,就为了解决用大量廉价的机器高速存取海量数据.实现数据分布式存储提供可靠的方案.从功能上来讲,HBase不折不扣是一个数据库,与我们熟悉的Oracle.MySQL.MSSQL等一样,对外提供数据的

网易视频云:HBase优化实战

网易视频云是网易倾力打造的一款基于云计算的分布式多媒体处理集群和专业音视频技术,提供稳定流畅.低时延.高并发的视频直播.录制.存储.转码及点播等音视频的PAAS服务,在线教育.远程医疗.娱乐秀场.在线金融等各行业及企业用户只需经过简单的开发即可打造在线音视频平台.现在,网易视频云的技术专家给大家分享一则技术文:HBase优化实战. 背景 Datastream一直以来在使用HBase分流日志,每天的数据量很大,日均大概在80亿条,10TB的数据.对于像Datastream这种数据量巨大.对写入要求

网易视频云:HBase问题诊断案例一则——客户端读写阻塞异常

网易视频云是网易倾力打造的一款基于云计算的分布式多媒体处理集群和专业音视频技术,提供稳定流畅.低时延.高并发的视频直播.录制.存储.转码及点播等音视频的PAAS服务,在线教育.远程医疗.娱乐秀场.在线金融等各行业及企业用户只需经过简单的开发即可打造在线音视频平台.下面,网易视频云技术专家给大家分享一则HBase问题诊断案例. 大数据时代,HBase作为一款扩展性极佳的分布式存储系统,越来越多地受到各种业务的青睐,以求在大数据存储的前提下实现高效的随机读写操作.对于业务方来讲,一方面关注HBase

网易视频云技术分享:HBase高可用原理与实践

网易视频云是网易倾力打造的一款基于云计算的分布式多媒体处理集群和专业音视频技术,提供稳定流畅.低时延.高并发的视频直播.录制.存储.转码及点播等音视频的PAAS服务,在线教育.远程医疗.娱乐秀场.在线金融等各行业及企业用户只需经过简单的开发即可打造在线音视频平台.现在,网易视频云的技术专家给大家分享一则技术文:HBase高可用原理与实践. 前言 前段时间有套线上HBase出了点小问题,导致该套HBase集群服务停止了2个小时,从而造成使用该套HBase作为数据存储的应用也出现了服务异常.在排查问

网易视频云:流媒体服务器原理和架构解析

网易视频云是网易公司旗下的视频云服务产品,以Paas服务模式,向开发者提供音视频编解码SDK和开放API,助力APP接入音视频功能.今天,网易视频云的技术专家给大家分享一篇流媒体技术性文章:流媒体服务器原理和架构解析. 一个完整的多媒体文件是由音频和视频两部分组成的,H264.Xvid等就是视频编码格式,MP3.AAC等就是音频编码格式,字幕文件只是附加文件.目前大部分的播放器产品对于H.264 + AAC的MP4编码格式支持最好,但是MP4也有很多的缺点,比如视频header很大,影响在线视频

网易视频云:新一代列式存储格式Parquet

网易视频云是网易倾力打造的一款基于云计算的分布式多媒体处理集群和专业音视频技术,提供稳定流畅.低时延.高并发的视频直播.录制.存储.转码及点播等音视频的PAAS服务,在线教育.远程医疗.娱乐秀场.在线金融等各行业及企业用户只需经过简单的开发即可打造在线音视频平台.现在,网易视频云的技术专家给大家分享一则技术文: 新一代列式存储格式Parquet. Apache Parquet是Hadoop生态圈中一种新型列式存储格式,它可以兼容Hadoop生态圈中大多数计算框架(Hadoop.Spark等),被

网易视频云技术分享:linux软raid的bitmap分析

网易视频云是网易倾力打造的一款基于云计算的分布式多媒体处理集群和专业音视频技术,提供稳定流畅.低时延.高并发的视频直播.录制.存储.转码及点播等音视频的PAAS服务,在线教育.远程医疗.娱乐秀场.在线金融等各行业及企业用户只需经过简单的开发即可打造在线音视频平台.现在,网易视频云的技术专家给大家分享一则技术文:linux软raid的bitmap分析. 在使用raid1,raid5等磁盘阵列的时候,对于数据的可靠性有很高的要求,raid5在写的时候需要计算校验并写入,raid1则写源和镜像来保证数