快速了解Hash算法

hash hashcode java

  • 1.hash
  • 2.hash算法

1.hash

Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入(又叫做预映射pre-image)通过散列算法变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来确定唯一的输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。 -- 来自百度百科

大白话: 任意输入值都有一个固定长度的输出

2.hash算法

hash算法很多,下面是Java中,字符串计算hashcode的源码:

public int hashCode() {
    int h = hash;
    if (h == 0 && value.length > 0) {
        char val[] = value;
        for (int i = 0; i < value.length; i++) {
            h = 31 * h + val[i];
        }
        hash = h;
    }
    return h;
}

很多人会疑惑为什么会是31?

  1. 31时是质数(只能分解成1和自身)可以增加结果的唯一性,因为函数算法(也叫散列函数)要尽可能的平均分布
  2. 虚拟机可以优化计算速度.

当然,也可以不使用31用其他值代替...,单元测试模拟一下

@Test
public void test01(){
  String s = "Hello";
  System.out.println(s.hashCode());

  int code = (int)‘H‘;
  code = 31*code + (int)‘e‘;
  code = 31*code + (int)‘l‘;
  code = 31*code + (int)‘l‘;
  code = 31*code + (int)‘o‘;
  System.out.println(code);
}

参考资料

原文地址:https://www.cnblogs.com/linyufeng/p/9946116.html

时间: 2024-10-14 01:24:26

快速了解Hash算法的相关文章

java8 hash算法

一.hash算法 哈希算法将任意长度的二进制值映射为较短的固定长度的二进制值,这个小的二进制值称为哈希值.哈希值是一段数据唯一且极其紧凑的数值表示形式.如果散列一段明文而且哪怕只更改该段落的一个字母,随后的哈希都将产生不同的值.要找到散列为同一个值的两个不同的输入,在计算上是不可能的,所以数据的哈希值可以检验数据的完整性.一般用于快速查找和加密算法. 二.jdk的hash算法实现 (1)Interger private final int value; @Override public int

常见hash算法的原理(转)

常见hash算法的原理 散列表,它是基于快速存取的角度设计的,也是一种典型的“空间换时间”的做法.顾名思义,该数据结构可以理解为一个线性表,但是其中的元素不是紧密排列的,而是可能存在空隙. 散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构.也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度.这个映射函数叫做散列函数,存放记录的数组叫做散列表. 比如我们存储70个元素,但我们可能为这70个元素申请了100个元素的空间.7

一致性hash算法详解

转载请说明出处:http://blog.csdn.net/cywosp/article/details/23397179 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到应用. 一致性hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义: 1.平衡性(Bal

常见hash算法的原理

转自:http://blog.csdn.net/zxycode007/article/details/6999984 散列表,它是基于快速存取的角度设计的,也是一种典型的“空间换时间”的做法.顾名思义,该数据结构可以理解为一个线性表,但是其中的元素不是紧密排列的,而是可能存在空隙. 散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构.也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度.这个映射函数叫做散列函数,存放记录的

Hash算法总结

1. Hash是什么,它的作用 先举个例子.我们每个活在世上的人,为了能够参与各种社会活动,都需要一个用于识别自己的标志.也许你觉得名字或是身份证就足以代表你这个人,但是这种代表性非常脆弱,因为重名的人很多,身份证也可以伪造.最可靠的办法是把一个人的所有基因序列记录下来用来代表这个人,但显然,这样做并不实际.而指纹看上去是一种不错的选择,虽然一些专业组织仍然可以模拟某个人的指纹,但这种代价实在太高了. 而对于在互联网世界里传送的文件来说,如何标志一个文件的身份同样重要.比如说我们下载一个文件,文

一致性hash算法在memcached中的使用

一.概述 1.我们的memcacheclient(这里我看的spymemcache的源代码).使用了一致性hash算法ketama进行数据存储节点的选择.与常规的hash算法思路不同.仅仅是对我们要存储数据的key进行hash计算,分配到不同节点存储.一致性hash算法是对我们要存储数据的server进行hash计算,进而确认每一个key的存储位置.  2.常规hash算法的应用以及其弊端 最常规的方式莫过于hash取模的方式.比方集群中可用机器适量为N,那么key值为K的的数据请求非常easy

一致性hash算法在内存数据库中的应用

由于redis是单点,但是项目中不可避免的会使用多台Redis缓存服务器,那么怎么把缓存的Key均匀的映射到多台Redis服务器上,且随着缓存服务器的增加或减少时做到最小化的减少缓存Key的命中率呢?这样就需要我们自己实现分布式. Memcached对大家应该不陌生,通过把Key映射到Memcached Server上,实现快速读取.我们可以动态对其节点增加,并未影响之前已经映射到内存的Key与memcached Server之间的关系,这就是因为使用了一致性哈希.因为Memcached的哈希策

一致性Hash算法在Redis分布式中的使用

由于redis是单点,但是项目中不可避免的会使用多台Redis缓存服务器,那么怎么把缓存的Key均匀的映射到多台Redis服务器上,且随着缓存服务器的增加或减少时做到最小化的减少缓存Key的命中率呢?这样就需要我们自己实现分布式. Memcached对大家应该不陌生,通过把Key映射到Memcached Server上,实现快速读取.我们可以动态对其节点增加,并未影响之前已经映射到内存的Key与memcached Server之间的关系,这就是因为使用了一致性哈希.因为Memcached的哈希策

逐步实现hash算法(基于BKDRhash函数)

哈希(Hash)算法,即散列函数.它是一种单向密码体制,即它是一个从明文到密文的不可逆的映射,只有加密过程,没有解密过程.同时,哈希函数可以将任意长度的输入经过变化以后得到固定长度的输出.hash算法一般用于快速查找和加密. hash算法可以使用的哈希函数种类很多,处理冲突的方法也有开放定址.再哈希.链地址.公共溢出区等. 因此,在编写代码之前,首先需要根据所要处理的数据,选择合适的hash函数和冲突处理办法.开放定址需要空闲存储单元,所需要的表比实际容量大,而且容易产生二次聚集发生新冲突.链地