Java Future源码分析

JDK future框架,提供了一种异步编程模式,基于线程池的。将任务runnable/callable提交到线程池executor,返回一个Future对象。通过future.get()获取执行结果,这里提交到线程池,后面的操作不会阻塞。future.get()获取结果会阻塞,其实也是用多线线程执行任务。

future.get()这里会阻塞,google的guava提供了一个calllback解决办法,这也是我准备看的

下面是一个future的demo

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

/**
 * @Author: <[email protected]>
 * @Description: jdk future demo
 * @Date: Created in : 2018/11/30 6:01 PM
 **/
public class TestJdkFuture {

  public static void main(String[] args) throws ExecutionException, InterruptedException {
    testJdkFuture();
  }

  public static void testJdkFuture() throws ExecutionException, InterruptedException {
    Callable<Integer> callable = () ->{
      System.out.println("callable do some compute");
      return 1;
    } ;
    Runnable runnable = () -> {
      System.out.println("runable do some compute");
    };
    ExecutorService executorService = Executors.newCachedThreadPool();
    Future<Integer> future = executorService.submit(callable);
    Future runableFuture = executorService.submit(runnable);
    Object runableRes = runableFuture.get();
    int res = future.get();
    executorService.shutdown();
    System.out.println("callable res: " + res);
    System.out.println("runnable res: " + runableRes);

  }
}

demo里面提交了一个Callable和一个Runnable到线程池,通过future获取计算结果

executorService.submit(callable)源码

public <T> Future<T> submit(Callable<T> task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task);
        execute(ftask);
        return ftask;
    }

这里主要是封装了一个RunnableFuture和提交任务到线程池

我们看下RunnableFuture里面的run方法,因为线程池执行任务,是执行run方法。看FutureTask里面的run方法

public void run() {
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return;
        try {
            Callable<V> c = callable;
            if (c != null && state == NEW) {
                V result;
                boolean ran;
                try {
                    result = c.call();
                    ran = true;
                } catch (Throwable ex) {
                    result = null;
                    ran = false;
                    setException(ex);
                }
                if (ran)
                    set(result);
            }
        } finally {
            // runner must be non-null until state is settled to
            // prevent concurrent calls to run()
            runner = null;
            // state must be re-read after nulling runner to prevent
            // leaked interrupts
            int s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
    }

首先,设置runner为线程池中的当前线程,后面执行call()方法,计算出结果,set(result)。跟进set(result)

/**
     * Sets the result of this future to the given value unless
     * this future has already been set or has been cancelled.
     *
     * <p>This method is invoked internally by the {@link #run} method
     * upon successful completion of the computation.
     *
     * @param v the value
     */
    protected void set(V v) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = v;
            UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
            finishCompletion();
        }
    }

这里用了一个cas设置FutureTask的state字段为COMPLETING,完成中的一个状态。接着设置outcom为计算结果,我们跟进finishCompletion()

/**
     * Removes and signals all waiting threads, invokes done(), and
     * nulls out callable.
     */
    private void finishCompletion() {
        // assert state > COMPLETING;
        for (WaitNode q; (q = waiters) != null;) {
            if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
                for (;;) {
                    Thread t = q.thread;
                    if (t != null) {
                        q.thread = null;
                        LockSupport.unpark(t);
                    }
                    WaitNode next = q.next;
                    if (next == null)
                        break;
                    q.next = null; // unlink to help gc
                    q = next;
                }
                break;
            }
        }

        done();

        callable = null;        // to reduce footprint
    }

WaitNode主要是一个阻塞线程链表,即调用future.get()方法的线程链表。这里主要作用是注意唤醒这些线程,通过LockSupport.unpark(t)唤醒。这里用阻塞线程链表,主要是考虑到可能有多个线程会调用future.get()阻塞

ok,到这里执行任务,把计算结果放到future中,并唤醒阻塞线程已经理清楚了

我们再来看下,future.get()是如何实现阻塞,和获取到计算结果的

进入future.get()

/**
     * Waits if necessary for the computation to complete, and then
     * retrieves its result.
     *
     * @return the computed result
     * @throws CancellationException if the computation was cancelled
     * @throws ExecutionException if the computation threw an
     * exception
     * @throws InterruptedException if the current thread was interrupted
     * while waiting
     */
    V get() throws InterruptedException, ExecutionException;

Future.java是一个接口,这里看注释可以看出,会阻塞等待结果计算完成。我们看下一个实现FutureTask.java的get()方法

/**
     * @throws CancellationException {@inheritDoc}
     */
    public V get() throws InterruptedException, ExecutionException {
        int s = state;
        if (s <= COMPLETING)
            s = awaitDone(false, 0L);
        return report(s);
    }

awaitDone(false, 0l)主要是阻塞线程,进入方法

/**
     * Awaits completion or aborts on interrupt or timeout.
     *
     * @param timed true if use timed waits
     * @param nanos time to wait, if timed
     * @return state upon completion
     */
    private int awaitDone(boolean timed, long nanos)
        throws InterruptedException {
        final long deadline = timed ? System.nanoTime() + nanos : 0L;
        WaitNode q = null;
        boolean queued = false;
        for (;;) {
            if (Thread.interrupted()) {
                removeWaiter(q);
                throw new InterruptedException();
            }

            int s = state;
            if (s > COMPLETING) {
                if (q != null)
                    q.thread = null;
                return s;
            }
            else if (s == COMPLETING) // cannot time out yet
                Thread.yield();
            else if (q == null)
                q = new WaitNode();
            else if (!queued)
                queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                     q.next = waiters, q);
            else if (timed) {
                nanos = deadline - System.nanoTime();
                if (nanos <= 0L) {
                    removeWaiter(q);
                    return state;
                }
                LockSupport.parkNanos(this, nanos);
            }
            else
                LockSupport.park(this);
        }
    }

这里,主要是阻塞线程,把当前线程放到阻塞线程链表中,通过LockSupport.park(this)阻塞当前线程,等待线程池里面的线程唤醒。唤醒之后,回到get()方法,看report()方法

/**
     * Returns result or throws exception for completed task.
     *
     * @param s completed state value
     */
    @SuppressWarnings("unchecked")
    private V report(int s) throws ExecutionException {
        Object x = outcome;
        if (s == NORMAL)
            return (V)x;
        if (s >= CANCELLED)
            throw new CancellationException();
        throw new ExecutionException((Throwable)x);
    }

这里主要是返回计算结果给阻塞线程

到这里,基本理清楚了,future的阻塞实现,以及获取计算结果的步骤。

future框架 = 线程池 + futrue

原文地址:https://www.cnblogs.com/luckygxf/p/10048238.html

时间: 2024-10-17 08:44:08

Java Future源码分析的相关文章

JAVA Collection 源码分析(一)之ArrayList

到今天为止,差不多已经工作一年了,一直在做的是javaweb开发,一直用的是ssh(sh)别人写好的框架,总感觉自己现在高不成低不就的,所以就像看看java的源码,顺便学习一下大牛的思想和架构,read and write一直是提高自己编程水平的不二法门,写博客只是记录自己的学习历程,方便回顾,写的不好的地方,请多多包含,不喜勿喷,好了废话少说,现在让我们开始我们的历程把,Let's go!!!!!!!! 想看源码无从下手,不知道有没有跟我一样感觉的人们,今天用Intellij发现了可以找出类与

JAVA Collection 源码分析(二)之SubList

昨天我们分析了ArrayList的源码,我们可以看到,在其中还有一个类,名为SubList,其继承了AbstractList. // AbstractList类型的引用,所有继承了AbstractList都可以传进来 private final AbstractList<E> parent; // 这个是其实就是parent的偏移量,从parent中的第几个元素开始的 private final int parentOffset; private final int offset; int s

Java 集合源码分析(一)HashMap

目录 Java 集合源码分析(一)HashMap 1. 概要 2. JDK 7 的 HashMap 3. JDK 1.8 的 HashMap 4. Hashtable 5. JDK 1.7 的 ConcurrentHashMap 6. JDK 1.8 的 ConcurrentHashMap 7. 最后补充一下 HashMap 中的一些属性和方法 附:更这个系列感觉自己像是又挖了一个坑??,不过趁自己刚好工作不太忙,有空闲期,静下心来研究学习源码也是一件很值得做的事,自己尽量会把这个坑填完??.

超赞!推荐一个专注于Java后端源码分析的Github项目!

大家好,最近有小伙伴们建议我把源码分析文章及源码分析项目(带注释版)放到github上,这样小伙伴们就可以把带中文注释的源码项目下载到自己本地电脑,结合源码分析文章自己本地调试,总之对于学习开源项目源码会更方便. 因此下面提供[源码笔记]的Github地址,若您觉得不错,欢迎Star点亮哦: Github主页:https://github.com/yuanmabiji 源码分析文章:https://github.com/yuanmabiji/Java-SourceCode-Blogs Sprin

[Java] HashMap源码分析

1.概述 Hashmap继承于AbstractMap,实现了Map.Cloneable.java.io.Serializable接口.它的key.value都可以为null,映射不是有序的. Hashmap不是同步的,如果想要线程安全的HashMap,可以通过Collections类的静态方法synchronizedMap获得线程安全的HashMap. Map map = Collections.synchronizedMap(new HashMap()); (除了不同步和允许使用 null 之

Java - LinkedList源码分析

java提高篇(二二)---LinkedList 一.概述 LinkedList与ArrayList一样实现List接口,只是ArrayList是List接口的大小可变数组的实现,LinkedList是List接口链表的实现.基于链表实现的方式使得LinkedList在插入和删除时更优于ArrayList,而随机访问则比ArrayList逊色些. LinkedList实现所有可选的列表操作,并允许所有的元素包括null. 除了实现 List 接口外,LinkedList 类还为在列表的开头及结尾

Java - ArrayList源码分析

java提高篇(二一)-----ArrayList 一.ArrayList概述 ArrayList是实现List接口的动态数组,所谓动态就是它的大小是可变的.实现了所有可选列表操作,并允许包括 null 在内的所有元素.除了实现 List 接口外,此类还提供一些方法来操作内部用来存储列表的数组的大小. 每个ArrayList实例都有一个容量,该容量是指用来存储列表元素的数组的大小.默认初始容量为10.随着ArrayList中元素的增加,它的容量也会不断的自动增长.在每次添加新的元素时,Array

Java Reference 源码分析

Reference对象封装了其它对象的引用,可以和普通的对象一样操作,在一定的限制条件下,支持和垃圾收集器的交互.即可以使用Reference对象来引用其它对象,但是最后还是会被垃圾收集器回收.程序有时候也需要在对象回收后被通知,以告知对象的可达性发生变更.  Java提供了四种不同类型的引用,引用级别从高到低分别为FinalReference,SoftReference,WeakReference,PhantomReference.其中FinalReference不对外提供使用.每种类型对应着

java 集合类源码分析--arrays

本文介绍一下java集合相关类arryas类的内容 .Arrays.sort()数组排序 Java Arrays中提供了对所有类型的排序.其中主要分为Primitive(8种基本类型)和Object两大类. 基本类型:采用调优的快速排序: 对象类型:采用改进的归并排序. 1.对于基本类型源码分析如下(以int[]为例): public static void sort(int[] a, int fromIndex, int toIndex) { //进行数组的界限检查 rangeCheck(a.