\(\\\)
\(Description\)
运行以下代码对一长为\(N\)的数列\(A\)排序,不保证数列元素互异:
cnt = 0 sorted = false while (not sorted): cnt = cnt + 1 sorted = true for i = 0 to N-2: if A[i+1] < A[i]: swap A[i], A[i+1] for i = N-2 downto 0: if A[i+1] < A[i]: swap A[i], A[i+1] for i = 0 to N-2: if A[i+1] < A[i]: sorted = false
求退出循环后\(cnt\)的值。
- \(N\in [0,10^5]\),\(A_i\in [0,10^9]\)
\(\\\)
\(Solution\)
- 求双向冒泡排序操作次数就没有\(silver\)那道题那么简单了,因为向前移动的瓶颈被去掉了,而换做局部的移动限制。
- 转化问题。设\(t_i\)表示将区间\([1,i]\)变为排序后状态的最少操作次数,那么答案即为\(max\{t_i\}\)。设\(s_i\)为排序后在\([1,i]\)中而原数列里不在\([1,i]\)的元素个数,可以证明\(s_i=t_i\)。因为双向冒泡排序可以保证,每次循环将当前未归位的最大元素和未归位的最小元素归位,所以对于一个没有完成排序的前缀区间,每次会将一个不应在该区间里的元素移出,将一个应该在改区间却原来不在的元素归位。
- 具体实现可以对下标开树状数组,将排序后的数列按顺序插入每个元素的初始位置,用总个数减前缀和或后缀和的方式查询即可。
\(\\\)
\(Code\)
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 100010
#define R register
#define gc getchar
using namespace std;
inline int rd(){
int x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
}
int n,ans=1;
struct seq{int x,p;}s[N];
struct BIT{
int c[N];
inline int lowbit(int x){return x&-x;}
inline void add(int p){for(;p<=n;p+=lowbit(p)) ++c[p];}
inline int sum(int p){
int res=0;
for(;p;p-=lowbit(p)) res+=c[p];
return res;
}
}bit;
inline bool cmp(seq x,seq y){
return x.x==y.x?x.p<y.p:x.x<y.x;
}
int main(){
n=rd();
for(R int i=1;i<=n;++i){s[i].x=rd();s[i].p=i;}
sort(s+1,s+1+n,cmp);
for(R int i=1;i<=n;++i){
bit.add(s[i].p);
ans=max(ans,i-bit.sum(i));
}
printf("%d\n",ans);
return 0;
}
原文地址:https://www.cnblogs.com/SGCollin/p/9661863.html
时间: 2024-11-01 17:28:21