均方误差和交叉熵损失函数比较

一.前言

在做神经网络的训练学习过程中,一开始,经常是喜欢用二次代价函数来做损失函数,因为比较通俗易懂,后面在大部分的项目实践中却很少用到二次代价函数作为损失函数,而是用交叉熵作为损失函数。为什么?一直在思考这个问题,这两者有什么区别,那个更好?下面通过数学的角度来解释下。

思考:我们希望我们损失函数能够做到,当我们预测的值跟目标值越远时,在修改参数时候,减去一个更大的值,做到更加快速的下降。

二.两种代价函数的表达式

二次代价损失函数:

交叉熵损失函数:

针对二分类来说,其中:

ai第Xi个样本经过前向传播之后到达最后一个节点的值

三.收敛速度比较

两个函数反向传播梯度比较

1.二次代价函数

为了方便只取一个样本,那么损失为:

那么w,b的梯度为:

2.交叉熵

为了方便只取一个样本,损失为:

计算w,b的梯度:

分析和结论

由此可看出,在做后向传播时

1.对于square mean在更新w,b时候,w,b的梯度跟激活函数的梯度成正比,激活函数梯度越大,w,b调整就越快,训练收敛就越快,但是Simoid函数在值非常高时候,梯度是很小的,比较平缓。

2.对于cross entropy在更新w,b时候,w,b的梯度跟激活函数的梯度没有关系了,bz已经表抵消掉了,其中bz-y表示的是预测值跟实际值差距,如果差距越大,那么w,b调整就越快,收敛就越快。

四.两个损失函数的函数图像

square mean:

交叉熵:

(这两个图是从吴恩达课程中截取出来的)可以看出,二次代价函数存在很多局部最小点,而交叉熵就不会。

附录:

simoid函数的导数:

参考:

1.https://blog.csdn.net/qikaihuting/article/details/78518263

2.https://stackoverflow.com/questions/36515202/why-is-the-cross-entropy-method-preferred-over-mean-squared-error-in-what-cases

原文地址:https://www.cnblogs.com/aijianiula/p/9651879.html

时间: 2024-11-08 07:58:19

均方误差和交叉熵损失函数比较的相关文章

谈谈交叉熵损失函数

一.交叉熵损失函数形式 现在给出三种交叉熵损失函数的形式,来思考下分别表示的的什么含义. --式子1 --式子2 --式子3 解释下符号,m为样本的个数,C为类别个数.上面三个式子都可以作为神经网络的损失函数作为训练,那么区别是什么? ■1>式子1,用于那些类别之间互斥(如:一张图片中只能保护猫或者狗的其中一个)的单任务分类中.连接的 softmax层之后的概率分布. tensorflow中的函数为:  tf.nn.softmax_cross_entropy_with_logits ■2>式子

交叉熵损失函数

交叉熵损失是分类任务中的常用损失函数,但是是否注意到二分类与多分类情况下的交叉熵形式上的不同呢? 两种形式 这两个都是交叉熵损失函数,但是看起来长的却有天壤之别.为什么同是交叉熵损失函数,长的却不一样? 因为这两个交叉熵损失函数对应不同的最后一层的输出:第一个对应的最后一层是softmax,第二个对应的最后一层是sigmoid 先来看下信息论中交叉熵的形式 交叉熵是用来描述两个分布的距离的,神经网络训练的目的就是使 g(x) 逼近 p(x). softmax层的交叉熵 (x)是什么呢?就是最后一

大白话5分钟带你走进人工智能-第十八节逻辑回归之交叉熵损失函数梯度求解过程(3)

                                               第十八节逻辑回归之交叉熵损失函数梯度求解过程(3) 上一节中,我们讲解了交叉熵损失函数的概念,目标是要找到使得损失函数最小的那组θ,也就是l(θ)最大,即预测出来的结果在训练集上全部正确的概率最大.那我们怎么样找到我们的最优解呢?上节中提出用梯度下降法求解,本节的话我们对其具体细节展开. 先来看下我们用梯度下降求解最优解,想要通过梯度下降优化L(θ)到最小值需要几步? 第一步,随机产生w,随机到0附近会

softmax交叉熵损失函数求导

来源:https://www.jianshu.com/p/c02a1fbffad6 简单易懂的softmax交叉熵损失函数求导 来写一个softmax求导的推导过程,不仅可以给自己理清思路,还可以造福大众,岂不美哉~ softmax经常被添加在分类任务的神经网络中的输出层,神经网络的反向传播中关键的步骤就是求导,从这个过程也可以更深刻地理解反向传播的过程,还可以对梯度传播的问题有更多的思考. softmax 函数 softmax(柔性最大值)函数,一般在神经网络中, softmax可以作为分类任

损失函数——均方误差和交叉熵

1.MSE(均方误差) MSE是指真实值与预测值(估计值)差平方的期望,计算公式如下: MSE = 1/m (Σ(ym-y'm)2),所得结果越大,表明预测效果越差,即y和y'相差越大 y = tf.constant([1,2,3,0,2]) y = tf.one_hot(y,depth=4) y = tf.cast(y,dtype=tf.float32) out = tf.random.normal([5,4]) # MSE标准定义方式 loss1 = tf.reduce_mean(tf.sq

吴裕雄--天生自然 pythonTensorFlow自然语言处理:交叉熵损失函数

import tensorflow as tf # 1. sparse_softmax_cross_entropy_with_logits样例. # 假设词汇表的大小为3, 语料包含两个单词"2 0" word_labels = tf.constant([2, 0]) # 假设模型对两个单词预测时,产生的logit分别是[2.0, -1.0, 3.0]和[1.0, 0.0, -0.5] predict_logits = tf.constant([[2.0, -1.0, 3.0], [1

交叉熵损失函数来源及求导推导

记录一下,方便复习 总结: 原文地址:https://www.cnblogs.com/zhibei/p/12334238.html

交叉熵

http://www.cnblogs.com/ljy2013/p/6432269.html 作者:Noriko Oshima链接:https://www.zhihu.com/question/41252833/answer/108777563来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 熵的本质是香农信息量()的期望. 现有关于样本集的2个概率分布p和q,其中p为真实分布,q非真实分布.按照真实分布p来衡量识别一个样本的所需要的编码长度的期望(即平均编码长度)为

如何通俗的解释交叉熵与相对熵

[From] https://www.zhihu.com/question/41252833/answer/108777563 熵的本质是香农信息量()的期望. 现有关于样本集的2个概率分布p和q,其中p为真实分布,q非真实分布.按照真实分布p来衡量识别一个样本的所需要的编码长度的期望(即平均编码长度)为:H(p)=.如果使用错误分布q来表示来自真实分布p的平均编码长度,则应该是:H(p,q)=.因为用q来编码的样本来自分布p,所以期望H(p,q)中概率是p(i).H(p,q)我们称之为"交叉熵