在浏览器中进行深度学习:TensorFlow.js (八)生成对抗网络 (GAN

Generative Adversarial Network 是深度学习中非常有趣的一种方法。GAN最早源自Ian Goodfellow的这篇论文。LeCun对GAN给出了极高的评价:

“There are many interesting recent development in deep learning…The most important one, in my opinion, is adversarial training (also called GAN for Generative Adversarial Networks). This, and the variations that are now being proposed is the most interesting idea in the last 10 years in ML, in my opinion.” – Yann LeCun

那么我们就看看GAN究竟是怎么回事吧:

如上图所示,GAN包含两个互相对抗的网络:G(Generator)和D(Discriminator)。正如它的名字所暗示的那样,它们的功能分别是:

Generator是一个生成器的网络,它接收一个随机的噪声,通过这个噪声生成图片,记做G(z)。
Discriminator是一个鉴别器网络,判别一张图片或者一个输入是不是“真实的”。它的输入x是数据或者图片,输出D(x)代表x为真实图片的概率,如果为1,就代表100%是真实的图片,而输出为0,就代表不可能是真实的图片。
在训练过程中,生成网络G的目标就是尽量生成真实的图片去欺骗判别网络D。而D的目标就是尽量把G生成的图片和真实的图片分别开来。这样,G和D构成了一个动态的“博弈过程”。在最理想的状态下,G可以生成足以“以假乱真”的图片G(z)。对于D来说,它难以判定G生成的图片究竟是不是真实的,因此D(G(z)) = 0.5。

最后,我们就可以使用生成器和随机输入来生成不同的数据或者图片了。

上面的描述大家可能都能理解,但是把它变成数学语言,可能你就蒙B了。

a??GAN???? ??????????a???????????????′¢??????

如上图所示,x是输入,z是随机噪声。D(x)是鉴别器的判定数据为真的概率,D(G(z))是判定生成数据为真的概率。生成器希望这个D(G(z))越大越好,这个时候整个表达式的值应该变小。而鉴别器的目的是能够有效区分真实数据和假数据,所以D(x)应该趋向于变大,D(G(z))趋向于变小,整个表达式就变大。也就是说训练过程,生成器和辨别器互相对抗,一个使上述表达式变小,另一个使其变大,最后训练趋向于平衡,而生成器这时候应该生成真假难辨的数据,这就是我们的最终目的。

上图是GAN算法训练的具体过程,这里我们不做过多的解释,直接运行一个例子。

a??GANa???????????????′¢??????

我们用MINST数据集来看看如何使用TensorflowJS来训练一个GAN,模拟生成手写数字。

代码见我的codepen

function gen(xs) {
const l1 = tf.leakyRelu(xs.matMul(G1w).add(G1b));
const l2 = tf.leakyRelu(l1.matMul(G2w).add(G2b));
const l3 = tf.tanh(l2.matMul(G3w).add(G3b));
return l3;
}

function disReal(xs) {
const l1 = tf.leakyRelu(xs.matMul(D1w).add(D1b));
const l2 = tf.leakyRelu(l1.matMul(D2w).add(D2b));
const logits = l2.matMul(D3w).add(D3b);
const output = tf.sigmoid(logits);
return [logits, output];
}

function disFake(xs) {
return disReal(gen(xs));
}
GAN的两个网络分别用gen和disReal创建。gen是生成器网络,disReal是辨别器的网络。disFake是把生成数据用辨别器来辨别。这里的网络使用leakyrelu。使得输出在-inf到+inf,利用sigmoid映射到【0,1】,这是辨别器模型输出一个0-1之间的概率。

a??leaky relua???????????????′¢??????

通常我们会创建一个比生成器更复杂的鉴别器网络使得鉴别器有足够的分辨能力。但在这个例子里,两个网络的复杂程度类似。

计算损失的函数使用 tf.sigmoidCrossEntropyWithLogits,值得注意的是,在最新的0.13版本中,这个交叉熵被移除了,你需要自己实现该方法。

训练过程如下:

async function trainBatch(realBatch, fakeBatch) {
const dcost = dOptimizer.minimize(
() => {
const [logitsReal, outputReal] = disReal(realBatch);
const [logitsFake, outputFake] = disFake(fakeBatch);

const lossReal = sigmoidCrossEntropyWithLogits(ONES_PRIME, logitsReal);
const lossFake = sigmoidCrossEntropyWithLogits(ZEROS, logitsFake);
return lossReal.add(lossFake).mean();
},
true,
[D1w, D1b, D2w, D2b, D3w, D3b]
);
await tf.nextFrame();
const gcost = gOptimizer.minimize(
() => {
const [logitsFake, outputFake] = disFake(fakeBatch);

const lossFake = sigmoidCrossEntropyWithLogits(ONES, logitsFake);
return lossFake.mean();
},
true,
[G1w, G1b, G2w, G2b, G3w, G3b]
);
await tf.nextFrame();

return [dcost, gcost];
}
训练使用了两个optimizer,

第一步,计算实际数据的辨别结果和1的交叉熵,以及生成器生成数据的辨别结果和0的交叉熵。也就是说,我们希望辨别器尽可能的判断出生成数据都是假的而实际数据都是真的。使得这两个交叉熵的均值最小。
第二步开始对抗,要让生成数据尽可能被判别为真。
下图是某个训练过程的损失:

这个是经过1000个迭代后的生成图:

大家可以尝试调整学习率,增加网络复杂度,加大迭代次数来获得更好的生成模型。

GAN的学习其实还是比较复杂的,参数和损失选择都不容易,好在有一些现成的工具可以使用,另外推荐大家去https://poloclub.github.io/ganlab/,提供了很直观的GAN学习的过程。这个也是用TensorflowJS来实现的。

参考:

https://www.msra.cn/zh-cn/news/features/gan-20170511
https://zhuanlan .www.michenggw.com zhihu.com/p/24767059
http://blog.aylien.com/introduction-www.mhylpt.com generative-adversarial-networks-code-tensorflow/
https://github.com/carpedm20/DCGAN-tensorflow
https://blog.openai.www.gcyl152.com com/generative-models/
https://zhuanlan.zhihu.com/p/45200767
https://blog.csdn.net/heyc861221/article/details/80127148

原文地址:https://www.cnblogs.com/qwangxiao/p/10030293.html

时间: 2024-10-30 18:14:27

在浏览器中进行深度学习:TensorFlow.js (八)生成对抗网络 (GAN的相关文章

利用tensorflow训练简单的生成对抗网络GAN

对抗网络是14年Goodfellow Ian在论文Generative Adversarial Nets中提出来的. 原理方面,对抗网络可以简单归纳为一个生成器(generator)和一个判断器(discriminator)之间博弈的过程.整个网络训练的过程中, 两个模块的分工 判断器,直观来看就是一个简单的神经网络结构,输入就是一副图像,输出就是一个概率值,用于判断真假使用(概率值大于0.5那就是真,小于0.5那就是假) 生成器,同样也可以看成是一个神经网络模型,输入是一组随机数Z,输出是一个

CNCC2017中的深度学习与跨媒体智能

转载请注明作者:梦里茶 目录 机器学习与跨媒体智能 传统方法与深度学习 图像分割 小数据集下的深度学习 语音前沿技术 生成模型 基于贝叶斯的视觉信息编解码 珠算:基于别噎死推断的深度生成模型库 图像与视频生成的规则约束 景深风景生成 骨架约束的人体视频生成 跨媒体智能 视频检索的哈希学习 多媒体与知识图谱 基于锚图的视觉数据分析 视频问答 细粒度分类 跨媒体关联与检索(待补充) 正片开始 传统方法与深度学习 图像分割 图像分割是医疗图像中一个很重要的任务,通常分为分割,配准,可视化几个子任务.这

图像识别中的深度学习 转

转:http://mp.weixin.qq.com/s?__biz=MzAwNDExMTQwNQ==&mid=209152042&idx=1&sn=fa0053e66cad3d2f7b107479014d4478#rd#opennewwindow 1.深度学习发展历史 深度学习是近十年来人工智能领域取得的重要突破.它在语音识别.自然语言处理.计算机视觉.图像与视频分析.多媒体等诸多领域的应用取得了巨大成功.现有的深度学习模型属于神经网络.神经网络的起源可追溯到20世纪40年代,曾经

深度学习之 rnn 台词生成

深度学习之 rnn 台词生成 写一个台词生成的程序,用 pytorch 写的. import os def load_data(path): with open(path, 'r', encoding="utf-8") as f: data = f.read() return data text = load_data('./moes_tavern_lines.txt')[81:] train_count = int(len(text) * 0.6) val_count = int(l

深度学习TensorFlow如何使用多GPU并行模式?

TensorFlow可以用单个GPU,加速深度学习模型的训练过程,但要利用更多的GPU或者机器,需要了解如何并行化地训练深度学习模型. 常用的并行化深度学习模型训练方式有两种:同步模式和异步模式. 下面将介绍这两种模式的工作方式及其优劣. 如下图,深度学习模型的训练是一个迭代的过程. 在每一轮迭代中,前向传播算法会根据当前参数的取值,计算出在一小部分训练数据上的预测值,然后反向传播算法,再根据损失函数计算参数的梯度并更新参数. 异步模式的训练流程图 在并行化地训练深度学习模型时,不同设备(GPU

吴裕雄--天生自然 神经网络人工智能项目:基于深度学习TensorFlow框架的图像分类与目标跟踪报告(续一)

1.3 项目计划 第一周:深入学习和了解神经网络的工作原理,学习卷积的相关理论. 第二周:使用python的TensorFlow库,编写神经网络深度学习代码,搭建神经网络层,并且了解其工作原理和相关的计算.相关参数的传递等,到htttps://www.kaggle.com/moltean/fruits下载fruits压缩包,对数据进行初步的处理. 第三周:使用TensorFlow搭建卷积神经网络,采用训练集数据对测试集数据进行预测:完成数据可视化,显示每个文件夹中第5张图片.使用Tensorbo

ui2code中的深度学习+传统算法应用

背景 在之前的文章中,我们已经提到过团队在UI自动化这方面的尝试,我们的目标是实现基于 单一图片到代码 的转换,在这个过程不可避免会遇到一个问题,就是为了从单一图片中提取出足够的有意义的结构信息,我们必须要拥有从图片中切割出想要区块(文字.按钮.商品图片等)的能力,而传统切割算法遇到复杂背景图片往往就捉襟见肘了(见下图),这个时候,我们就需要有能力把复杂前后景的图片划分为各个层级图层,再交给切割算法去处理,拿到我们期望的结构信息. 经过传统切割算法处理,会无法获取图片结构信息,最终只会当成一张图

用深度学习技术FCN自动生成口红

1 这个是什么? ???????基于全卷积神经网络(FCN)的自动生成口红Python程序. 图1 FCN生成口红的效果(注:此两张人脸图来自人脸公开数据库LFW) 2 怎么使用了? ???????首先能从这个Github (https://github.com/Kalafinaian/ai_lips_makeup) 中下载这个python项目.下载解压后你得到这样一个程序. 图2 口红Python程序 ???????本项目的运行环境为Python3.6,需要的深度学习包tensorflow ,

Ubuntu16.04下安装配置numpy,scipy,matplotlibm,pandas 以及sklearn+深度学习tensorflow配置(非Anaconda环境)

1.ubuntu镜像源准备(防止下载过慢): 参考博文:http://www.cnblogs.com/top5/archive/2009/10/07/1578815.html 步骤如下: 首先,备份一下ubuntu 12.10 原来的源地址列表文件 sudo cp /etc/apt/sources.list /etc/apt/sources.list.old 然后进行修改  sudo gedit /etc/apt/sources.list 可以在里面添加资源地址,直接覆盖掉原来的. 2.使用ap