POJ 1061 (扩展欧几里德算法)

题意:两只青蛙在同一个纬度上跳跃,给定每个青蛙的开始坐标和每秒跳几个单位,纬度长为L,求它们相遇的最短时间。

析:开始,一看只有一组数据,就想模拟一下,觉得应该不会超时,但是不幸的是TLE了,我知道这肯定是一个数学题,不过刚开始没想到是扩展欧几里德,后来才发现这个可以转化为这个算法。

我们假设刚开始它们的坐标分别是x,y,它们的速度分别是m,n,坐标轴长为L,那么经过t次跳跃后它们的距离之差就是L(想一想是不是,可以画图看看)。

所以(mt-x) - (nt-y) = kL;可转化为kL + (n-m)t = x - y。只有满足gcd(L, n-m) 是x-y的倍数才有解。

通过扩展欧几里德求得是t不一定是正数,所以我们要求最小的非负整数,tt = L / d, t = (t % tt + tt) % tt。

代码如下:

#include <iostream>

using namespace std;
typedef long long LL;

void exgcd(LL a, LL b, LL &d, LL &x, LL &y){
    if(!b){ d = a;  x = 1;  y = 0;  }
    else { exgcd(b, a%b, d, y, x);  y -= x * (a/b); }
}

int main(){
    LL n, m, xx, yy, d = 0, l, k, t;
    cin >> xx >> yy >> m >> n >> l;
    exgcd(l, n-m, d, k, t);
    if((xx-yy) % d != 0)  cout << "Impossible\n";
    else{
        t = t * ((xx-yy)/d);
        LL tt = l / d;
        t = (t % tt + tt) % tt;
        cout << t << endl;

    }
    return 0;
}
时间: 2024-12-23 16:49:11

POJ 1061 (扩展欧几里德算法)的相关文章

poj 1061 扩展欧几里德同余方程求解

摘要写在一瞪眼. #include<iostream> using namespace std; long long exgcd(long long a,long long b,long long &k,long long &t) { if (b==0) { k=1; t=0; return a; } else { long long tp_gcd; tp_gcd=exgcd(b,a%b,k,t); long long temp; temp=k; k=t; t=temp-(a/

扩展欧几里德算法详解

扩展欧几里德算法 谁是欧几里德?自己百度去 先介绍什么叫做欧几里德算法 有两个数 a b,现在,我们要求 a b 的最大公约数,怎么求?枚举他们的因子?不现实,当 a b 很大的时候,枚举显得那么的na?ve ,那怎么做? 欧几里德有个十分又用的定理: gcd(a, b) = gcd(b , a%b) ,这样,我们就可以在几乎是 log 的时间复杂度里求解出来 a 和 b 的最大公约数了,这就是欧几里德算法,用 C++ 语言描述如下: 由于是用递归写的,所以看起来很简洁,也很好记忆.那么什么是扩

【zz】欧几里德与扩展欧几里德算法相关

关于欧几里德与扩展欧几里德算法在此附上我自学的时用的网站:感谢:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 这里我会结合该大牛的成果以及自己的收获总结一下: 欧几里德算法: 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 证明: a可以表示成a = kb +

poj 1061(扩展欧几里得)

青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 90299   Accepted: 16412 Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能

扩展欧几里德算法

文章来源:http://blog.csdn.net/zhjchengfeng5/article/details/7786595 谁是欧几里德?自己百度去 先介绍什么叫做欧几里德算法 有两个数 a b,现在,我们要求 a b 的最大公约数,怎么求?枚举他们的因子?不现实,当 a b 很大的时候,枚举显得那么的na?ve ,那怎么做? 欧几里德有个十分又用的定理: gcd(a, b) = gcd(b , a%b) ,这样,我们就可以在几乎是 log 的时间复杂度里求解出来 a 和 b 的最大公约数了

欧几里德与扩展欧几里德算法(转)

欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b)的公约数 假设d 是(b,a mod b)的公约数,则 d | b , d |r ,但是a

HDU 1098 Ignatius&#39;s puzzle 费马小定理+扩展欧几里德算法

题目大意: 给定k,找到一个满足的a使任意的x都满足 f(x)=5*x^13+13*x^5+k*a*x 被65整除 推证: f(x) = (5*x^12 + 13 * x^4 + ak) * x 因为x可以任意取 那么不能总是满足 65|x 那么必须是 65 | (5*x^12 + 13 * x^4 + ak) 那么就是说 x^12 / 13 + x^4 / 5 + ak / 65 正好是一个整数 假设能找到满足的a , 那么将 ak / 65 分进x^12 / 13 + x^4 / 5中得到

欧几里德与扩展欧几里德算法

转自网上大牛博客,讲的浅显易懂. 原文地址:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有

扩展欧几里德算法及其证明

扩展欧几里德算法: 已知a, b求解一组x,y,使它们满足等式: ax+by = gcd(a, b) =d(解一定存在,根据数论中的相关定理). 扩展欧几里德常用在求解模线性方程及方程组中. 证明: ax+by=gcd(a,b); 1. (1) a = 0,ax+by = gcd(a,b) = gcd(0,b) = b, 此时x = 0(此时x的值是任意的),y = 1: (2)b = 0, ax + by = gcd(a,b) = gcd(a,0) = a, 此时x = 1,y = 0(此时y

(扩展欧几里德算法)zzuoj 10402: C.机器人

10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地蹦,但只可以在(X,Y),(X,-Y),(-X,Y),(-X,-Y),(Y,X),(Y,-X),(-Y,X),(-Y,-X)八个点跳来跳去. 现在,Dr. Kong想在机器人卡尔身上设计一个计数器,记录它蹦蹦跳跳的数字变化(S,T),即,路过的位置坐标值之和. 你能帮助Dr. Kong判断机器人能否