原理
在分类(classification)问题中,常常需要把一个事物分到某个类别。一个事物具有很多属性,把它的众多属性看做一个向量,即x=(x1,x2,x3,…,xn),用x这个向量来代表这个事物。类别也是有很多种,用集合Y=y1,y2,…ym表示。如果x属于y1类别,就可以给x打上y1标签,意思是说x属于y1类别。这就是所谓的分类(Classification)。
x的集合记为X,称为属性集。一般X和Y的关系是不确定的,你只能在某种程度上说x有多大可能性属于类y1,比如说x有80%的可能性属于类y1,这时可以把X和Y看做是随机变量,P(Y|X)称为Y的后验概率(posterior
probability),与之相对的,P(Y)称为Y的先验概率(prior probability)1。
在训练阶段,我们要根据从训练数据中收集的信息,对X和Y的每一种组合学习后验概率P(Y|X)。分类时,来了一个实例x,在刚才训练得到的一堆后验概率中找出所有的P(Y|x),
其中最大的那个y,即为x所属分类。根据贝叶斯公式,后验概率为P(Y|X)=P(X|Y)P(Y)P(X)
在比较不同Y值的后验概率时,分母P(X)总是常数,因此可以忽略。先验概率P(Y)可以通过计算训练集中属于每一个类的训练样本所占的比例容易地估计。这里直接计算P(Y|X)比较麻烦,而朴素贝叶斯分类提出了一个独立性假设:x1,x2,...,xn相互独立,这也是被称之为“朴素”的原因之一。于是P(X|Y) = P(x1|Y)P(x2|Y)...P(xn|Y),而P(xi|Y)很好求了。
对于二元分类,要比较P(Y=1|X)和P(Y=0|X)的大小,只需比较分子P(X|Y)P(Y)部分。因此只需计算n个条件概率和先验概率。
文本分类
在文本分类中,假设我们有一个文档d∈X,X是文档向量空间(document space),和一个固定的类集合C={c1,c2,…,cj},类别又称为标签。显然,文档向量空间是一个高维度空间。我们把一堆打了标签的文档集合<d,c>作为训练样本,<d,c>∈X×C。例如:
<d,c>={Beijing joins the World Trade Organization, China}
对于这个只有一句话的文档,我们把它归类到 China,即打上china标签。
我们期望用某种训练算法,训练出一个函数γ,能够将文档映射到某一个类别:
γ:X→C
这种类型的学习方法叫做有监督学习,因为事先有一个监督者(我们事先给出了一堆打好标签的文档)像个老师一样监督着整个学习过程。
朴素贝叶斯分类器是一种有监督学习,常见有两种模型,多项式模型(multinomial model)和伯努利模型(Bernoulli model)。
多项式模型
在多项式模型中, 设某文档d=(t1,t2,…,tk),tk是该文档中出现过的单词,允许重复,则
先验概率P(c)= 类c下单词总数/整个训练样本的单词总数
类条件概率P(tk|c)=(类c下单词tk在各个文档中出现过的次数之和+1)/(类c下单词总数+|V|)
V是训练样本的单词表(即抽取单词集合,单词出现多次,只算一个),|V|则表示训练样本包含多少种单词。在这里,m=|V|, p=1/|V|。
P(tk|c)可以看作是单词tk在证明d属于类c上提供了多大的证据,而P(c)则可以认为是类别c在整体上占多大比例(有多大可能性)。
伯努利模型
P(c)= 类c下文件总数/整个训练样本的文档总数
P(tk|c)=(类c下包含单词tk的文件数+1)/(类c下文档总数+2)
在这里,m=2, p=1/2。
#这里一定要注意:伯努利是以文档为粒度的,所以分母是文档总数,而不是网上以讹传讹的类c下单词总数
这里贴几个以讹传讹的链接:
http://blog.csdn.net/kongying168/article/details/7026389
http://cn.soulmachine.me/blog/20100528/
还有好多其他的就不一一列举了。
上面两个模型中的分子分母都加上了一些数,这是为了防止某个条件概率为0,从而整个P(X|Y) = P(x1|Y)P(x2|Y)...P(xn|Y)乘积为0。
实例演示
对一个邮件进行垃圾分类,数据集来自加州大学欧文分校的http://archive.ics.uci.edu/ml/datasets/Spambase spambase
数据格式说明如下:
英文的,我就不解释了(主要是解释起来费劲,-_-。sorry!)
为了判别分类模型的好坏,可以计算AUC值。
本次实验采用sklearn包中的metrics计算ROC曲线和AUC值(ROC和AUC详见http://blog.csdn.net/chjjunking/article/details/5933105);而这个是需要每个样本的后验概率的。因此分子P(X)的值也要求出来,将整个式子转换下:
P(Y|X)=P(X|Y)P(Y)P(X) =
P(x1|Y=1)P(x2|Y=1)...P(xn|Y=1)P(Y=1) / (P(x1|Y=1)P(x2|Y=1)...P(xn|Y=1) + P(x1|Y=0)P(x2|Y=0)...P(xn|Y=0))
分子分母上下同时除以P(x1|Y=0)P(x2|Y=0)...P(xn|Y=0)得
公式不好打啊,过几天用手写,然后传图片吧,-_-。sorry!
好了,废话不多说,上代码:
NaiveBayes.py
#!/usr/bin/python # NaiveBayes classification # lming_08 2014.07.06 import math import numpy as np from sklearn import metrics class NaiveBayes: def __init__(self, trainFile): self.trainingFile = trainFile self.trainingData = self.read_data(trainFile) # Read training or testing data def read_data(self, file): data = [] fd = open(file) for line in fd: arr = line.rstrip().split(',') # Turn an instance's last column(y column) as integer arr[-1] = int(arr[-1]) # Append the instance to trainingData data.append(tuple(arr)) fd.close() return data def train_model_with_Bernoulli(self): self.sumPosInstance = 0. self.sumNegInstance = 0. self.termfreq = {} for instance in self.trainingData: if int(instance[-1]) == 1: self.sumPosInstance += 1 else: self.sumNegInstance += 1 for i in range(len(instance) - 1): key = str() if i < 55: if float(instance[i]) > 0: key = "freq" + "|" + str(i + 1) + "|" + "1" else: key = "freq" + "|" + str(i + 1) + "|" + "0" else: key = "length" + "|" + str(i + 1) + "|" + instance[i] if key not in self.termfreq: self.termfreq[key] = [0, 0] if int(instance[-1]) == 1: self.termfreq[key][1] += 1 else: self.termfreq[key][0] += 1 # prior_prob = p(y = 1) self.prior_prob = self.sumPosInstance / (self.sumPosInstance + self.sumNegInstance) # prior_ratio = p(y=1) / p(y=0) self.prior_ratio = self.sumPosInstance / self.sumNegInstance # the function should be called before predict() def set_testfile(self, testFile): self.testing_data = self.read_data(testFile) def predict(self): self.testingY = [] self.predict_result = [] for instance in self.testing_data: self.predict_result.append(self.predict_instance_with_Bernoulli(instance)) self.testingY.append(instance[-1]) def get_statistics(self): true_classify_count = 0. false_classify_count = 0. for instance in self.testing_data: post_prob = self.predict_instance_with_Bernoulli(instance) if post_prob >= 0.5 and instance[-1] == 1: true_classify_count += 1 elif post_prob >= 0.5 and instance[-1] == 0: false_classify_count += 1 elif post_prob < 0.5 and instance[-1] == 1: false_classify_count += 1 elif post_prob < 0.5 and instance[-1] == 0: true_classify_count += 1 return true_classify_count, false_classify_count def predict_instance_with_Bernoulli(self, instance): f = 0. for i in range(len(instance) - 1): key = str() if i < 55: if float(instance[i]) > 0: key = "freq" + "|" + str(i + 1) + "|" + "1" else: key = "freq" + "|" + str(i + 1) + "|" + "0" else: key = "length" + "|" + str(i + 1) + "|" + instance[i] if key in self.termfreq: f += math.log( (self.termfreq[key][1] + 1) / ((self.termfreq[key][0] + 2) * self.prior_ratio) ) posterior_ratio = self.prior_ratio * math.exp(f) # posterior probability prob = posterior_ratio / (1. + posterior_ratio) return prob def getAUC(self): y = np.array(self.testingY) pred = np.array(self.predict_result) fpr, tpr, thresholds = metrics.roc_curve(y, pred) # metrics.roc_curve(y, pred, pos_label=1) auc = metrics.auc(fpr, tpr) return auc def main(trainFile, testFile): nb = NaiveBayes(trainFile) nb.train_model_with_Bernoulli() nb.set_testfile(testFile) nb.predict() print("the value of AUC: " % nb.getAUC()) print("the value of priori probability:" % nb.priorProb) if __name__ == "__main__": if len(argv) != 3: print "Usage: python %s trainFile(in) testFile(out)" % __file__ sys.exit(0) main(argv[1], argv[2])
PartitionFile.py 用于将数据文件分割为训练文件(80%)和测试文件(20%)
#!/usr/bin/python # Partitioning a file into training(80%) and testing file(20%) # lming_08 2014.07.06 from random import randint def partition_file(file, train_file, test_file): ltest = [] ltrain = [] fd = open(file, "r") train_fd = open(train_file, "w") test_fd = open(test_file, "w") test_index = 0 train_index = 0 for line in fd: rnum = randint(1, 10) if rnum == 5 or rnum == 6: test_index += 1 ltest.extend(line) if test_index == 100: test_fd.writelines(ltest) ltest = [] test_index = 0 else: train_index += 1 ltrain.extend(line) if train_index == 100: train_fd.writelines(ltrain) ltrain = [] train_index = 0 if len(ltest) > 0: test_fd.writelines(ltest) if len(ltrain) > 0: train_fd.writelines(ltrain) train_fd.close() test_fd.close() fd.close()
Classify.py 执行文件
#!/usr/bin/python% # main execute file # lming_08 2014.07.06 import sys from sys import argv from NaiveBayes import NaiveBayes from PartitionFile import partition_file def main(srcFile, trainFile, testFile): partition_file(srcFile, trainFile, testFile) nb = NaiveBayes(trainFile) nb.train_model_with_Bernoulli() nb.set_testfile(testFile) nb.predict() print("the value of AUC: %f" % nb.getAUC()) print("the value of priori probability: %f" % nb.prior_prob) true_classify_count, false_classify_count = nb.get_statistics() error_rate = false_classify_count/(true_classify_count + false_classify_count) print("the error rate : %f" % error_rate) if __name__ == "__main__": if len(argv) != 4: print "Usage: python %s srcFile(in) trainFile(out) testFile(out)" % __file__ sys.exit(0) main(argv[1], argv[2], argv[3])
执行结果为:
可以看到AUC值还是比较高的,分类错误率为9.87%,还是可以接受的。
最后再吐槽下,上文中指出的以讹传讹的算法竟然在《机器学习实战》这本书中出现了,而网上好多同学也学习过书中的代码,遗憾的是并没有人怀疑并指出这个,不知道为什么。
参考文献
http://blog.csdn.net/tbkken/article/details/8062358
http://blog.csdn.net/kongying168/article/details/7026389
http://cn.soulmachine.me/blog/20100528/
http://www.chepoo.com/naive-bayesian-text-classification-algorithm-to-learn.html
http://blog.csdn.net/chjjunking/article/details/5933105
机器学习之基于朴素贝叶斯文本分类算法,布布扣,bubuko.com