Romberg算法

function Romberg(a,b,n)
h=b-a;
R(1,1)=h*(f(a)+f(b))/2;
for i=2:n
m=0;
for k=1:2^(i-2)
m=m+f(a+(k-0.5)*h);
end
R(2,1)=1/2*(R(1,1)+h*m);
for j=2:i
R(2,j)=R(2,j-1)+(R(2,j-1)-R(1,j-1))/(4^(j-1)-1);
end
h=h/2;
for j=1:i
R(1,j)=R(2,j);
end
end
disp(R(2,3))
end
function f=f(x)
f=x^2*log(x);
end

时间: 2024-10-26 21:35:37

Romberg算法的相关文章

【C/C++】实现龙贝格算法

1. 复化梯形法公式以及递推化 复化梯形法是一种有效改善求积公式精度的方法.将[a,b]区间n等分,步长h = (b-a)/n,分点xk = a + kh.复化求积公式就是将这n等分的每一个小区间进行常规的梯形法求积,再将这n的小区间累加求和. 公式如下: 使用复化梯形法积分时,可以将此过程递推化,以更方便的使用计算机实现.设积分区间[a,b],将此区间n等分,则等分点共有n+1个,使用复化梯形积分求得Tn.进行二分,二分结果记为T2n,则有: 2. 龙贝格积分公式 龙贝格积分实际上是提高收敛速

低秩矩阵填充|奇异值阈值算法

斜风细雨作小寒,淡烟疏柳媚晴滩.入淮清洛渐漫漫. 雪沫乳花浮午盏,蓼茸蒿笋试春盘.人间有味是清欢. ---- 苏轼 更多精彩内容请关注微信公众号 "优化与算法" 低秩矩阵恢复是稀疏向量恢复的拓展,二者具有很多可以类比的性质.首先,稀疏是相对于向量而言,稀疏性体现在待恢复向量中非零元素的数量远小于向量长度:而低秩是相对于矩阵而言,低秩体现在矩阵的秩远小于矩阵的实际尺寸.其次,稀疏向量恢复问题可以转化为基于 \(\ell _1\) 范数的凸优化问题,因为 \(\ell _1\) 范数是 \

龙贝格求积算法

龙贝格求积算法python实现 import numpy as np def trapezoid(a, b, n, func): """ 复化梯形公式求函数func在区间[a,b]上的积分值 n是等分的区间数目 """ x = np.linspace(a, b, num=n + 1) y = func(x) h = (b - a) / (2 * n) return h * (y[0] + 2 * np.sum(y[1:-1]) + y[-1])

经典排序算法 - 冒泡排序Bubble sort

 原文出自于 http://www.cnblogs.com/kkun/archive/2011/11/23/bubble_sort.html 经典排序算法 - 冒泡排序Bubble sort 原理是临近的数字两两进行比较,按照从小到大或者从大到小的顺序进行交换, 这样一趟过去后,最大或最小的数字被交换到了最后一位, 然后再从头开始进行两两比较交换,直到倒数第二位时结束,其余类似看例子 例子为从小到大排序, 原始待排序数组| 6 | 2 | 4 | 1 | 5 | 9 | 第一趟排序(外循环) 第

转载:DenseNet算法详解

原文连接:http://blog.csdn.net/u014380165/article/details/75142664 参考连接:http://blog.csdn.net/u012938704/article/details/53468483 本文这里仅当学习笔记使用,具体细节建议前往原文细度. 论文:Densely Connected Convolutional Networks 论文链接:https://arxiv.org/pdf/1608.06993.pdf 代码的github链接:h

基于位置信息的聚类算法介绍及模型选择

百度百科 聚类:将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类.由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异."物以类聚,人以群分",在自然科学和社会科学中,存在着大量的分类问题.聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法.聚类分析起源于分类学,但是聚类不等于分类.聚类与分类的不同在于,聚类所要求划分的类是未知的. 分类和聚类算法一直以来都是数据挖掘,机器学习领域的热门课题,因此产生了众多的

密码算法详解——AES

0 AES简介 美国国家标准技术研究所在2001年发布了高级加密标准(AES).AES是一个对称分组密码算法,旨在取代DES成为广泛使用的标准. 根据使用的密码长度,AES最常见的有3种方案,用以适应不同的场景要求,分别是AES-128.AES-192和AES-256.本文主要对AES-128进行介绍,另外两种的思路基本一样,只是轮数会适当增加. 1 算法流程 AES加解密的流程图如下: AES加密过程涉及到4种操作:字节替代(SubBytes).行移位(ShiftRows).列混淆(MixCo

矩阵乘法的Strassen算法详解

题目描述 请编程实现矩阵乘法,并考虑当矩阵规模较大时的优化方法. 思路分析 根据wikipedia上的介绍:两个矩阵的乘法仅当第一个矩阵B的列数和另一个矩阵A的行数相等时才能定义.如A是m×n矩阵和B是n×p矩阵,它们的乘积AB是一个m×p矩阵,它的一个元素其中 1 ≤ i ≤ m, 1 ≤ j ≤ p. 值得一提的是,矩阵乘法满足结合律和分配率,但并不满足交换律,如下图所示的这个例子,两个矩阵交换相乘后,结果变了: 下面咱们来具体解决这个矩阵相乘的问题. 解法一.暴力解法 其实,通过前面的分析

关于SVM数学细节逻辑的个人理解(三) :SMO算法理解

第三部分:SMO算法的个人理解 接下来的这部分我觉得是最难理解的?而且计算也是最难得,就是SMO算法. SMO算法就是帮助我们求解: s.t.   这个优化问题的. 虽然这个优化问题只剩下了α这一个变量,但是别忘了α是一个向量,有m个αi等着我们去优化,所以还是很麻烦,所以大神提出了SMO算法来解决这个优化问题. 关于SMO最好的资料还是论文<Sequential Minimal Optimization A Fast Algorithm for Training Support Vector