【题解】Luogu P1613 跑路 倍增+最短路

题里都说了$2^k$,明显倍增

因为跑路器的存在,不能直接跑最短路的原因:

如图,如果直接最短路从1号点到5号点的距离为3,需要3秒

而实际上走$1->5$这条边,因为$8=2^3$,只需1秒

$n≤50$直接无脑floyed随便跑

code

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 namespace gengyf{
 4 #define ll long long
 5 const int maxn=1e6+10;
 6 inline int read(){
 7     int x=0,f=1;
 8     char c=getchar();
 9     while(c<‘0‘||c>‘9‘){if(c==‘-‘)f=-1;c=getchar();}
10     while(c>=‘0‘&&c<=‘9‘){x=(x*10)+c-‘0‘;c=getchar();}
11     return x*f;
12 }
13 int n,m,dis[60][60];//dis[i][j]从i到j所需的时间
14 bool e[60][60][35];//e[i][j][k]是否存在一条从i到j距离是2^k的路径
15 int main(){
16     memset(dis,0x3f3f3f3f,sizeof(dis));
17     n=read();m=read();
18     for(int i=1;i<=m;i++){
19         int u,v;u=read();v=read();
20         e[u][v][0]=1;
21         dis[u][v]=1;
22     }
23     for(int t=1;t<=35;t++)
24         for(int i=1;i<=n;i++)
25             for(int j=1;j<=n;j++)
26                 for(int k=1;k<=n;k++){
27                     if(e[i][j][t-1]&&e[j][k][t-1]){
28                         e[i][k][t]=1;
29                         dis[i][k]=1;
30                     }
31                 }
32     for(int k=1;k<=n;k++)
33         for(int i=1;i<=n;i++)
34             for(int j=1;j<=n;j++){
35                 dis[i][j]=min(dis[i][k]+dis[k][j],dis[i][j]);
36             }
37     printf("%d",dis[1][n]);
38     return 0;
39 }
40 }
41 signed main(){
42   gengyf::main();
43   return 0;
44 }

原文地址:https://www.cnblogs.com/gengyf/p/11625567.html

时间: 2024-10-01 04:44:49

【题解】Luogu P1613 跑路 倍增+最短路的相关文章

luogu P1613 跑路

P1613 跑路 2017-09-17 题目描述 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数).当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米.小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米.小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要

P1613 跑路 倍增思想 + 邻接矩阵

题意 给定一个有向图,每条边的花费为1.现在有一个空间跑路器,可以走2^k长度的路,只用花1秒的时间.问从1走到n最少的时间.n <= 50, k <= 64. 思路 这道题说是倍增,但是写起来不见倍增的影子,我觉得真妙,对倍增有了更膜拜的认识.我们可以开一个bool矩阵dp[i][j][k],表示i到j是否可以通过2^k的路程到达.更新这个矩阵可以通过类似floyd最短路的思想 if(dp[i][t][k-1] && dp[t][j][k-1]) dp[i][j][k] =

Luogu P1613 跑路 题解报告

题目传送门 [题目大意] [思路分析] 我们设$g[i][j][k]$表示从$i$走$2^k$步能否到达$j$,$d[i][j]$表示$i$到$j$最少要走多少秒. 用倍增预处理出$g$,然后就可以$Floyd$跑最短路啦!QwQ [代码实现] 1 #include<cstdio> 2 #include<iostream> 3 #include<cstring> 4 #include<algorithm> 5 #include<cmath> 6

【Luogu】P1613 跑路

[Luogu]P1613 跑路 一.题目 题目描述 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数).当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米.小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米.小A想每天能醒地尽量晚,所以让你帮他算算,他最少需

P1613 跑路 图论*倍增

如题,非常巧妙的一道图论*倍增,n <= 50 所以可以用高复杂度的Floyd搞. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 5 using namespace std; 6 7 int ans = (1<<31)-1; 8 int n,m; 9 int g[36][60][60]; 10 int ng[60][60]; 11 12 int main(){ 13 ios:

P1613 跑路

P1613 跑路 题目描述 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数).当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米.小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米.小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司.数据保

洛谷P1613 跑路

P1613 跑路 题目描述 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数).当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米.小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米.小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司.数据保

【luogu1613】跑路 - 倍增+Floyd

题目描述 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数).当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米.小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米.小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司.数据保证1到n至少有一条

【Luogu】P1613跑路(倍增+Floyd)

题目链接在此 其实我看到这道题一点想法都没有 设f[i][j][k]表示用2i秒能不能从j走到k.如果可以,那j到k就可以一秒走到,它们的路径长度就是1.方程为f[i][j][k]=f[i-1][j][l]&&f[i-1][l][k]. 最后在图上跑一遍Floyd.复杂度O(n3). 代码如下 #include<cstdio> #include<cstdlib> #include<cctype> #include<cstring> inlin