flask 源码解析:上下文(一)

文章出处  https://www.cnblogs.com/jackchengcc/archive/2018/11/29/10025949.html

一:什么是上下文

  每一段程序都有很多外部变量。只有像Add这种简单的函数才是没有外部变量的。一旦你的一段程序有了外部变量,这段程序就不完整,不能独立运行。你为了使他们运行,就要给所有的外部变量一个一个写一些值进去。这些值的集合就叫上下文。

  在 flask 中,视图函数需要知道它执行情况的请求信息(请求的 url,参数,方法等)以及应用信息(应用中初始化的数据库等),才能够正确运行。最直观地做法是把这些信息封装成一个对象,作为参数传递给视图函数。但是这样的话,所有的视图函数都需要添加对应的参数,即使该函数内部并没有使用到它。flask 的做法是把这些信息作为类似全局变量的东西,视图函数需要的时候,可以使用 from flask import request 获取。但是这些对象和全局变量不同的是——它们必须是动态的,因为在多线程或者多协程的情况下,每个线程或者协程获取的都是自己独特的对象,不会互相干扰。

二:实现过程

  在python多线程中,有threading.local,可以实现多个线程访问某个变量时,每个线程只能看到自己的数据(flask上下文中,每个线程也只能访问自己请求所封装的数据),其内部原理大致为:封装的对象有一个字典,字典中保存了每个线程id所对应的数据,读取到该对象时,它动态的查询当前线程id对应的数据。代码实现原理大致如下:

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

import threading

from _thread import get_ident

from greenlet import getcurrent

"""

{

   1368:{}

}

"""

import threading

try:

    from greenlet import getcurrent as get_ident # 协程

except ImportError:

    try:

        from thread import get_ident

    except ImportError:

        from _thread import get_ident # 线程<br>

class Local(object):

    def __init__(self):

        self.storage = {}#存储数据

        self.get_ident = get_ident#线程唯一标识

    def set(self,k,v):

        ident = self.get_ident()

        origin = self.storage.get(ident)

        if not origin:

            origin = {k:v}

        else:

            origin[k] = v

        self.storage[ident] = origin

    def get(self,k):

        ident = self.get_ident()

        origin = self.storage.get(ident)

        if not origin:

            return None

        return origin.get(k,None)

local_values = Local()

def task(num):

    local_values.set(‘name‘,num)

    import time

    time.sleep(1)

    print(local_values.get(‘name‘), threading.current_thread().name)

for i in range(20):

    th = threading.Thread(target=task, args=(i,),name=‘线程%s‘ % i)

    th.start()

  flask 中有两种上下文:application context 和 request context。上下文有关的内容定义在 globals.py 文件,文件的内容也非常短:    

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

def _lookup_req_object(name):

    top = _request_ctx_stack.top

    if top is None:

        raise RuntimeError(_request_ctx_err_msg)

    return getattr(top, name)

def _lookup_app_object(name):

    top = _app_ctx_stack.top

    if top is None:

        raise RuntimeError(_app_ctx_err_msg)

    return getattr(top, name)

def _find_app():

    top = _app_ctx_stack.top

    if top is None:

        raise RuntimeError(_app_ctx_err_msg)

    return top.app

# context locals

_request_ctx_stack = LocalStack()

_app_ctx_stack = LocalStack()

current_app = LocalProxy(_find_app)

request = LocalProxy(partial(_lookup_req_object, ‘request‘))

session = LocalProxy(partial(_lookup_req_object, ‘session‘))

g = LocalProxy(partial(_lookup_app_object, ‘g‘))

  flask 提供两种上下文:application context 和 request context 。application context 又演化出来两个变量 current_app 和 g,而 request context 则演化出来 request 和 session

  这里的实现用到了两个东西:LocalStack 和 LocalProxy。它们两个的结果就是我们可以动态地获取两个上下文的内容,在并发程序中每个视图函数都会看到属于自己的上下文,而不会出现混乱。

  LocalStack 和 LocalProxy 都是 werkzeug 提供的,定义在 local.py 文件中。在分析这两个类之前,我们先介绍这个文件另外一个基础的类 LocalLocal 就是实现了类似 threading.local 的效果——多线程或者多协程情况下全局变量的隔离效果。下面是它的代码:

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

# since each thread has its own greenlet we can just use those as identifiers

# for the context.  If greenlets are not available we fall back to the

# current thread ident depending on where it is.

try:

    from greenlet import getcurrent as get_ident

except ImportError:

    try:

        from thread import get_ident

    except ImportError:

        from _thread import get_ident

class Local(object):

    __slots__ = (‘__storage__‘, ‘__ident_func__‘)

    def __init__(self):

        # 数据保存在 __storage__ 中,后续访问都是对该属性的操作

        object.__setattr__(self, ‘__storage__‘, {})

        object.__setattr__(self, ‘__ident_func__‘, get_ident)

    def __call__(self, proxy):

        """Create a proxy for a name."""

        return LocalProxy(self, proxy)

    # 清空当前线程/协程保存的所有数据

    def __release_local__(self):

        self.__storage__.pop(self.__ident_func__(), None)

    # 下面三个方法实现了属性的访问、设置和删除。

    # 注意到,内部都调用 `self.__ident_func__` 获取当前线程或者协程的 id,然后再访问对应的内部字典。

    # 如果访问或者删除的属性不存在,会抛出 AttributeError。

    # 这样,外部用户看到的就是它在访问实例的属性,完全不知道字典或者多线程/协程切换的实现

    def __getattr__(self, name):

        try:

            return self.__storage__[self.__ident_func__()][name]

        except KeyError:

            raise AttributeError(name)

    def __setattr__(self, name, value):

        ident = self.__ident_func__()

        storage = self.__storage__

        try:

            storage[ident][name] = value

        except KeyError:

            storage[ident] = {name: value}

    def __delattr__(self, name):

        try:

            del self.__storage__[self.__ident_func__()][name]

        except KeyError:

            raise AttributeError(name)

  可以看到,Local 对象内部的数据都是保存在 __storage__ 属性的,这个属性变量是个嵌套的字典:map[ident]map[key]value。最外面字典 key 是线程或者协程的 identity,value 是另外一个字典,这个内部字典就是用户自定义的 key-value 键值对。用户访问实例的属性,就变成了访问内部的字典,外面字典的 key 是自动关联的。__ident_func 是 协程的 get_current 或者线程的 get_ident,从而获取当前代码所在线程或者协程的 id。

  除了这些基本操作之外,Local 还实现了 __release_local__ ,用来清空(析构)当前线程或者协程的数据(状态)。__call__ 操作来创建一个 LocalProxy 对象,LocalProxy 会在下面讲到。

  理解了 Local,我们继续回来看另外两个类。

  LocalStack 是基于 Local 实现的栈结构。如果说 Local 提供了多线程或者多协程隔离的属性访问,那么 LocalStack 就提供了隔离的栈访问。下面是它的实现代码,可以看到它提供了 pushpop 和 top 方法。

  

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

# __release_local__ 可以用来清空当前线程或者协程的栈数据<br># __call__ 方法返回当前线程或者协程栈顶元素的代理对象。<br>

class LocalStack(object):

    """This class works similar to a :class:`Local` but keeps a stack

    of objects instead. """

    def __init__(self):

        self._local = Local()

    def __release_local__(self):

        self._local.__release_local__()

    def __call__(self):

        def _lookup():

            rv = self.top

            if rv is None:

                raise RuntimeError(‘object unbound‘)

            return rv

        return LocalProxy(_lookup)

    # push、pop 和 top 三个方法实现了栈的操作,

    # 可以看到栈的数据是保存在 self._local.stack 属性中的

    def push(self, obj):

        """Pushes a new item to the stack"""

        rv = getattr(self._local, ‘stack‘, None)

        if rv is None:

            self._local.stack = rv = []

        rv.append(obj)

        return rv

    def pop(self):

        """Removes the topmost item from the stack, will return the

        old value or `None` if the stack was already empty.

        """

        stack = getattr(self._local, ‘stack‘, None)

        if stack is None:

            return None

        elif len(stack) == 1:

            release_local(self._local)

            return stack[-1]

        else:

            return stack.pop()

    @property

    def top(self):

        """The topmost item on the stack.  If the stack is empty,

        `None` is returned.

        """

        try:

            return self._local.stack[-1]

        except (AttributeError, IndexError):

            return None

  我们在之前看到了 request context 的定义,它就是一个 LocalStack 的实例:   

?


1

_request_ctx_stack = LocalStack()

  它会当前线程或者协程的请求都保存在栈里,等使用的时候再从里面读取。至于为什么要用到栈结构,而不是直接使用 Local,我们会在后面揭晓答案,你可以先思考一下。

  LocalProxy 是一个 Local 对象的代理,负责把所有对自己的操作转发给内部的 Local 对象。LocalProxy 的构造函数介绍一个 callable 的参数,这个 callable 调用之后需要返回一个 Local 实例,后续所有的属性操作都会转发给 callable 返回的对象。 

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

class LocalProxy(object):

    """Acts as a proxy for a werkzeug local.  Forwards all operations to

    a proxied object.  The only operations not supported for forwarding

    are right handed operands and any kind of assignment.

    Example usage::

        from werkzeug.local import Local

        l = Local()

        # these are proxies

        request = l(‘request‘)

        user = l(‘user‘)

        from werkzeug.local import LocalStack

        _response_local = LocalStack()

        # this is a proxy

        response = _response_local()

    Whenever something is bound to l.user / l.request the proxy objects

    will forward all operations.  If no object is bound a :exc:`RuntimeError`

    will be raised.

    To create proxies to :class:`Local` or :class:`LocalStack` objects,

    call the object as shown above.  If you want to have a proxy to an

    object looked up by a function, you can (as of Werkzeug 0.6.1) pass

    a function to the :class:`LocalProxy` constructor::

        session = LocalProxy(lambda: get_current_request().session)

    .. versionchanged:: 0.6.1

       The class can be instantiated with a callable as well now.

    """

    __slots__ = (‘__local‘, ‘__dict__‘, ‘__name__‘, ‘__wrapped__‘)

    def __init__(self, local, name=None):

        object.__setattr__(self, ‘_LocalProxy__local‘, local)

        object.__setattr__(self, ‘__name__‘, name)

        if callable(local) and not hasattr(local, ‘__release_local__‘):

            # "local" is a callable that is not an instance of Local or

            # LocalManager: mark it as a wrapped function.

            object.__setattr__(self, ‘__wrapped__‘, local)

    def _get_current_object(self):

        """Return the current object.  This is useful if you want the real

        object behind the proxy at a time for performance reasons or because

        you want to pass the object into a different context.

        """

        if not hasattr(self.__local, ‘__release_local__‘):

            return self.__local()

        try:

            return getattr(self.__local, self.__name__)

        except AttributeError:

            raise RuntimeError(‘no object bound to %s‘ % self.__name__)

    @property

    def __dict__(self):

        try:

            return self._get_current_object().__dict__

        except RuntimeError:

            raise AttributeError(‘__dict__‘)

    def __repr__(self):

        try:

            obj = self._get_current_object()

        except RuntimeError:

            return ‘<%s unbound>‘ % self.__class__.__name__

        return repr(obj)

    def __bool__(self):

        try:

            return bool(self._get_current_object())

        except RuntimeError:

            return False

    def __unicode__(self):

        try:

            return unicode(self._get_current_object())  # noqa

        except RuntimeError:

            return repr(self)

    def __dir__(self):

        try:

            return dir(self._get_current_object())

        except RuntimeError:

            return []

    def __getattr__(self, name):

        if name == ‘__members__‘:

            return dir(self._get_current_object())

        return getattr(self._get_current_object(), name)

    def __setitem__(self, key, value):

        self._get_current_object()[key] = value

    def __delitem__(self, key):

        del self._get_current_object()[key]

    if PY2:

        __getslice__ = lambda x, i, j: x._get_current_object()[i:j]

        def __setslice__(self, i, j, seq):

            self._get_current_object()[i:j] = seq

        def __delslice__(self, i, j):

            del self._get_current_object()[i:j]

    __setattr__ = lambda x, n, v: setattr(x._get_current_object(), n, v)

    __delattr__ = lambda x, n: delattr(x._get_current_object(), n)

    __str__ = lambda x: str(x._get_current_object())

    __lt__ = lambda x, o: x._get_current_object() < o

    __le__ = lambda x, o: x._get_current_object() <= o

    __eq__ = lambda x, o: x._get_current_object() == o

    __ne__ = lambda x, o: x._get_current_object() != o

    __gt__ = lambda x, o: x._get_current_object() > o

    __ge__ = lambda x, o: x._get_current_object() >= o

    __cmp__ = lambda x, o: cmp(x._get_current_object(), o)  # noqa

    __hash__ = lambda x: hash(x._get_current_object())

    __call__ = lambda x, *a, **kw: x._get_current_object()(*a, **kw)

    __len__ = lambda x: len(x._get_current_object())

    __getitem__ = lambda x, i: x._get_current_object()[i]

    __iter__ = lambda x: iter(x._get_current_object())

    __contains__ = lambda x, i: i in x._get_current_object()

    __add__ = lambda x, o: x._get_current_object() + o

    __sub__ = lambda x, o: x._get_current_object() - o

    __mul__ = lambda x, o: x._get_current_object() * o

    __floordiv__ = lambda x, o: x._get_current_object() // o

    __mod__ = lambda x, o: x._get_current_object() % o

    __divmod__ = lambda x, o: x._get_current_object().__divmod__(o)

    __pow__ = lambda x, o: x._get_current_object() ** o

    __lshift__ = lambda x, o: x._get_current_object() << o

    __rshift__ = lambda x, o: x._get_current_object() >> o

    __and__ = lambda x, o: x._get_current_object() & o

    __xor__ = lambda x, o: x._get_current_object() ^ o

    __or__ = lambda x, o: x._get_current_object() | o

    __div__ = lambda x, o: x._get_current_object().__div__(o)

    __truediv__ = lambda x, o: x._get_current_object().__truediv__(o)

    __neg__ = lambda x: -(x._get_current_object())

    __pos__ = lambda x: +(x._get_current_object())

    __abs__ = lambda x: abs(x._get_current_object())

    __invert__ = lambda x: ~(x._get_current_object())

    __complex__ = lambda x: complex(x._get_current_object())

    __int__ = lambda x: int(x._get_current_object())

    __long__ = lambda x: long(x._get_current_object())  # noqa

    __float__ = lambda x: float(x._get_current_object())

    __oct__ = lambda x: oct(x._get_current_object())

    __hex__ = lambda x: hex(x._get_current_object())

    __index__ = lambda x: x._get_current_object().__index__()

    __coerce__ = lambda x, o: x._get_current_object().__coerce__(x, o)

    __enter__ = lambda x: x._get_current_object().__enter__()

    __exit__ = lambda x, *a, **kw: x._get_current_object().__exit__(*a, **kw)

    __radd__ = lambda x, o: o + x._get_current_object()

    __rsub__ = lambda x, o: o - x._get_current_object()

    __rmul__ = lambda x, o: o * x._get_current_object()

    __rdiv__ = lambda x, o: o / x._get_current_object()

    if PY2:

        __rtruediv__ = lambda x, o: x._get_current_object().__rtruediv__(o)

    else:

        __rtruediv__ = __rdiv__

    __rfloordiv__ = lambda x, o: o // x._get_current_object()

    __rmod__ = lambda x, o: o % x._get_current_object()

    __rdivmod__ = lambda x, o: x._get_current_object().__rdivmod__(o)

    __copy__ = lambda x: copy.copy(x._get_current_object())

    __deepcopy__ = lambda x, memo: copy.deepcopy(x._get_current_object(), memo)

   这里实现的关键是把通过参数传递进来的 Local 实例保存在 __local 属性中,并定义了 _get_current_object() 方法获取当前线程或者协程对应的对象。

   NOTE:前面双下划线的属性,会保存到 _ClassName__variable 中。所以这里通过 “_LocalProxy__local” 设置的值,后面可以通过 self.__local 来获取。关于这个知识点,可以查看 stackoverflow 的这个问题

   然后 LocalProxy 重写了所有的魔术方法(名字前后有两个下划线的方法),具体操作都是转发给代理对象的。这里只给出了几个魔术方法,感兴趣的可以查看源码中所有的魔术方法。

   继续回到 request context 的实现:

?


1

2

3

_request_ctx_stack = LocalStack()

request = LocalProxy(partial(_lookup_req_object, ‘request‘))

session = LocalProxy(partial(_lookup_req_object, ‘session‘))

  再次看这段代码希望能看明白,_request_ctx_stack 是多线程或者协程隔离的栈结构,request每次都会调用 _lookup_req_object 栈头部的数据来获取保存在里面的 requst context

  那么请求上下文信息是什么被放在 stack 中呢?还记得之前介绍的 wsgi_app() 方法有下面两行代码吗?

?


1

2

ctx = self.request_context(environ)

ctx.push()

  每次在调用 app.__call__ 的时候,都会把对应的请求信息压栈,最后执行完请求的处理之后把它出栈。

  我们来看看request_context, 这个 方法只有一行代码: 

?


1

2

def request_context(self, environ):

    return RequestContext(self, environ)

  它调用了 RequestContext,并把 self 和请求信息的字典 environ 当做参数传递进去。追踪到 RequestContext 定义的地方,它出现在 ctx.py 文件中,代码如下:

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

class RequestContext(object):

    """The request context contains all request relevant information.  It is

    created at the beginning of the request and pushed to the

    `_request_ctx_stack` and removed at the end of it.  It will create the

    URL adapter and request object for the WSGI environment provided.

    """

    def __init__(self, app, environ, request=None):

        self.app = app

        if request is None:

            request = app.request_class(environ)

        self.request = request

        self.url_adapter = app.create_url_adapter(self.request)

        self.match_request()

    def match_request(self):

        """Can be overridden by a subclass to hook into the matching

        of the request.

        """

        try:

            url_rule, self.request.view_args = \

                self.url_adapter.match(return_rule=True)

            self.request.url_rule = url_rule

        except HTTPException as e:

            self.request.routing_exception = e

    def push(self):

        """Binds the request context to the current context."""

        # Before we push the request context we have to ensure that there

        # is an application context.

        app_ctx = _app_ctx_stack.top

        if app_ctx is None or app_ctx.app != self.app:

            app_ctx = self.app.app_context()

            app_ctx.push()

            self._implicit_app_ctx_stack.append(app_ctx)

        else:

            self._implicit_app_ctx_stack.append(None)

        _request_ctx_stack.push(self)

        self.session = self.app.open_session(self.request)

        if self.session is None:

            self.session = self.app.make_null_session()

    def pop(self, exc=_sentinel):

        """Pops the request context and unbinds it by doing that.  This will

        also trigger the execution of functions registered by the

        :meth:`~flask.Flask.teardown_request` decorator.

        """

        app_ctx = self._implicit_app_ctx_stack.pop()

        try:

            clear_request = False

            if not self._implicit_app_ctx_stack:

                self.app.do_teardown_request(exc)

                request_close = getattr(self.request, ‘close‘, None)

                if request_close is not None:

                    request_close()

                clear_request = True

        finally:

            rv = _request_ctx_stack.pop()

            # get rid of circular dependencies at the end of the request

            # so that we don‘t require the GC to be active.

            if clear_request:

                rv.request.environ[‘werkzeug.request‘] = None

            # Get rid of the app as well if necessary.

            if app_ctx is not None:

                app_ctx.pop(exc)

    def auto_pop(self, exc):

        if self.request.environ.get(‘flask._preserve_context‘) or \

           (exc is not None and self.app.preserve_context_on_exception):

            self.preserved = True

            self._preserved_exc = exc

        else:

            self.pop(exc)

    def __enter__(self):

        self.push()

        return self

    def __exit__(self, exc_type, exc_value, tb):

        self.auto_pop(exc_value)

  每个 request context 都保存了当前请求的信息,比如 request 对象和 app 对象。在初始化的最后,还调用了 match_request 实现了路由的匹配逻辑

  push 操作就是把该请求的 ApplicationContext(如果 _app_ctx_stack 栈顶不是当前请求所在 app ,需要创建新的 app context) 和 RequestContext 有关的信息保存到对应的栈上,压栈后还会保存 session 的信息; pop 则相反,把 request context 和 application context 出栈,做一些清理性的工作。

  到这里,上下文的实现就比较清晰了:每次有请求过来的时候,flask 会先创建当前线程或者进程需要处理的两个重要上下文对象,把它们保存到隔离的栈里面,这样视图函数进行处理的时候就能直接从栈上获取这些信息。

  NOTE:因为 app 实例只有一个,因此多个 request 共享了 application context

  到这里,关于 context 的实现和功能已经讲解得差不多了。还有两个疑惑没有解答。

  1. 为什么要把 request context 和 application context 分开?每个请求不是都同时拥有这两个上下文信息吗?
  2. 为什么 request context 和 application context 都有实现成栈的结构?每个请求难道会出现多个 request context 或者 application context 吗?

  第一个答案是“灵活度”,第二个答案是“多 application”。虽然在实际运行中,每个请求对应一个 request context 和一个 application context,但是在测试或者 python shell 中运行的时候,用户可以单独创建 request context 或者 application context,这种灵活度方便用户的不同的使用场景;而且栈可以让 redirect 更容易实现,一个处理函数可以从栈中获取重定向路径的多个请求信息。application 设计成栈也是类似,测试的时候可以添加多个上下文,另外一个原因是 flask 可以多个 application 同时运行:  

?


1

2

3

4

5

6

7

from werkzeug.wsgi import DispatcherMiddleware

from frontend_app import application as frontend

from backend_app import application as backend

application = DispatcherMiddleware(frontend, {

    ‘/backend‘:     backend

})

  这个例子就是使用 werkzeug 的 DispatcherMiddleware 实现多个 app 的分发,这种情况下 _app_ctx_stack 栈里会出现两个 application context。

      Update: 为什么要用 LocalProxy

  为什么要使用 LocalProxy?不使用 LocalProxy 直接访问 LocalStack 的对象会有什么问题吗?

  首先明确一点,Local 和 LocalStack 实现了不同线程/协程之间的数据隔离。在为什么用 LocalStack 而不是直接使用 Local 的时候,我们说过这是因为 flask 希望在测试或者开发的时候,允许多 app 、多 request 的情况。而 LocalProxy 也是因为这个才引入进来的!

  我们拿 current_app = LocalProxy(_find_app) 来举例子。每次使用 current_app 的时候,他都会调用 _find_app 函数,然后对得到的变量进行操作。

  如果直接使用 current_app = _find_app() 有什么区别呢?区别就在于,我们导入进来之后,current_app 就不会再变化了。如果有多 app 的情况,就会出现错误,比如:

?


1

2

3

4

5

6

7

8

9

10

from flask import current_app

app = create_app()

admin_app = create_admin_app()

def do_something():

    with app.app_context():

        work_on(current_app)

        with admin_app.app_context():

            work_on(current_app)

  这里我们出现了嵌套的 app,每个 with 上下文都需要操作其对应的 app,如果不适用 LocalProxy 是做不到的。

  对于 request 也是类似!但是这种情况真的很少发生,有必要费这么大的功夫增加这么多复杂度吗?

  其实还有一个更大的问题,这个例子也可以看出来。比如我们知道 current_app 是动态的,因为它背后对应的栈会 push 和 pop 元素进去。那刚开始的时候,栈一定是空的,只有在 with app.app_context() 这句的时候,才把栈数据 push 进去。而如果不采用 LocalProxy 进行转发,那么在最上面导入 from flask import current_app 的时候,current_app 就是空的,因为这个时候还没有把数据 push 进去,后面调用的时候根本无法使用。

  所以为什么需要 LocalProxy 呢?简单总结一句话:因为上下文保存的数据是保存在栈里的,并且会动态发生变化。如果不是动态地去访问,会造成数据访问异常。

Flask上下文流程图:

原文地址:https://www.cnblogs.com/AbnerLc/p/11637119.html

时间: 2024-10-07 16:14:47

flask 源码解析:上下文(一)的相关文章

Flask源码解析(理解working outside of application context)

from flask import Flask, current_app app = Flask(__name__) a = current_app d = current_app.config['DEBUG'] 首先从这段代码看起,代码运行的结果就是 RuntimeError: Working outside of application context. 此时本地代理未绑定,不是我们想要的核心flask对象.代码报错. current_app = LocalProxy(_find_app)

Flask源码解析:字符串方法endswith与os.path.splittext()

1.字符串方法endswith endswith方法: def endswith(self, suffix, start=None, end=None): # real signature unknown; restored from __doc__ """ S.endswith(suffix[, start[, end]]) -> bool Return True if S ends with the specified suffix, False otherwise

Werkzeug之Local源码解析

Werkzeug之Local源码解析 原博客地址 http://liuyajing.coding.me/blogs/python/2018/werkzeug-local/ 一.引入 最近在阅读 Flask 的源码,遇到三个概念:Local . LocalStack 和 LocalProxy ,本文主要就针对 Local 概念及其源码进行原理剖析. 二.Local Local 是一个类,源码位置:site-packages/werkzeug/local.py 在模块的开头,有以下代码: # 由于每

Werkzeug之LocalStack源码解析

Werkzeug之LocalStack源码解析 原博文地址 http://liuyajing.coding.me/blogs/python/2018/werkzeug-localstack/ 一.引入 最近在阅读 Flask 的源码,遇到三个概念:Local . LocalStack 和 LocalProxy ,本文主要就针对 LocalStack 概念及其源码进行原理剖析. 二.原理 这个类类似于:class:Local,但是在 storage[ident] 中存放的是一个 key 为 sta

Spring源码解析-applicationContext

Demo uml类图 ApplicationContext ApplicationListener 源码解析 主流程 obtainFreshBeanFactory prepareBeanFactory invokeBeanFactoryPostProcessors registerBeanPostProcessors registerListeners finishRefresh 总结 在已经有BeanFactory可以完成Ioc功能情况下,spring又提供了ApplicationContex

Spring IoC源码解析——Bean的创建和初始化

Spring介绍 Spring(http://spring.io/)是一个轻量级的Java 开发框架,同时也是轻量级的IoC和AOP的容器框架,主要是针对JavaBean的生命周期进行管理的轻量级容器,可以单独使用,也可以和Struts框架,MyBatis框架等组合使用. IoC介绍 IoC是什么 Ioc-Inversion of Control,即"控制反转",不是什么技术,而是一种设计思想.在Java开发中,Ioc意味着将你设计好的对象交给容器控制,而不是传统的在你的对象内部直接控

ExcelReport第二篇:ExcelReport源码解析

导航 目   录:基于NPOI的报表引擎--ExcelReport 上一篇:使用ExcelReport导出Excel 下一篇:扩展元素格式化器 概述 针对上一篇随笔收到的反馈,在展开对ExcelReport源码解析之前,我认为把编写该组件时的想法分享给大家是有必要的. 编写该组件时,思考如下: 1)要实现样式.格式与数据的彻底分离. 为什么要将样式.格式与数据分离呢?恩,你不妨想一想在生成报表时,那些是变的而那些又是不变的.我的结论是:变的是数据. 有了这个想法,很自然的想到用模板去承载不变的部

十七.jQuery源码解析之入口方法Sizzle(1)

函数Sizzle(selector,context,results,seed)用于查找与选择器表达式selector匹配的元素集合.该函数是选择器引擎的入口. 函数Sizzle执行的6个关键步骤如下: 1.解析选择器表达式,解析出块表达式和关系符. 2.如果存在位置伪类,则从左向右查找: a.查找第一个块表达式匹配的元素集合,得到第一个上下文元素集合. b.遍历剩余的块表达式和块间关系符,不断缩小上下文元素集合. 3.否则从右向左查找: a.查找最后一个块表达式匹配的元素集合,得到候选集,映射集

【Android应用开发】EasyDialog 源码解析

示例源码下载 : EasyDialog 简介 : -- 作用 : 用于在界面进行一些介绍, 说明; -- 效果图 : 一. EasyDialog 源码解析 1. 实现原理 实现原理 : -- EasyDialog 效果 : 在点击后, 会从屏幕外飞入对话框, 飞入恰好能够正好处于特定 View 组件的上方 或者下方; -- 本质 : 点击按钮弹出的对话框会填充整个屏幕, 背景设置成透明的, 然后会计算组件坐标, 记录坐标位置, 再在弹出的整个对话框中 绘制一个 带小三角对话框的布局, 并让其执行