caffe中batch norm源码阅读

1. batch norm

输入batch norm层的数据为[N, C, H, W], 该层计算得到均值为C个,方差为C个,输出数据为[N, C, H, W].

<1> 形象点说,均值的计算过程为:

(1)

即对batch中相同索引的通道数取平均值,所以最终计算得到的均值为C个,方差的计算过程与此相同。

<2> batch norm层的作用:

a. 均值:(2)

b. 方差:(3)

c. 归一化:(4)

2. caffe中batch_norm_layer.cpp中的LayerSetUp函数:

 1 template <typename Dtype>
 2 void BatchNormLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
 3       const vector<Blob<Dtype>*>& top) {
 4   BatchNormParameter param = this->layer_param_.batch_norm_param();     //读取deploy中moving_average_fraction参数值
 5   moving_average_fraction_ = param.moving_average_fraction();     //改变量在batch_norm_layer.hpp中的定义为bool use_global_stats_
 6   use_global_stats_ = this->phase_ == TEST;     //channel在batch_norm_layer.hpp中的定义为int channels_
 7   if (param.has_use_global_stats())
 8     use_global_stats_ = param.use_global_stats();
 9   if (bottom[0]->num_axes() == 1)
10     channels_ = 1;
11   else
12     channels_ = bottom[0]->shape(1);
13   eps_ = param.eps();
14   if (this->blobs_.size() > 0) {
15     LOG(INFO) << "Skipping parameter initialization";
16   } else {       //blobs的个数为三个,其中:       //blobs_[0]的尺寸为channels_,保存输入batch中各通道的均值;       //blobs_[1]的尺寸为channels_,保存输入batch中各通道的方差;       //blobs_[2]的尺寸为1, 保存moving_average_fraction参数;       //对上面三个blobs_初始化为0.
17     this->blobs_.resize(3);
18     vector<int> sz;
19     sz.push_back(channels_);
20     this->blobs_[0].reset(new Blob<Dtype>(sz));
21     this->blobs_[1].reset(new Blob<Dtype>(sz));
22     sz[0] = 1;
23     this->blobs_[2].reset(new Blob<Dtype>(sz));
24     for (int i = 0; i < 3; ++i) {
25       caffe_set(this->blobs_[i]->count(), Dtype(0),
26                 this->blobs_[i]->mutable_cpu_data());
27     }
28   }
29   // Mask statistics from optimization by setting local learning rates
30   // for mean, variance, and the bias correction to zero.
31   for (int i = 0; i < this->blobs_.size(); ++i) {
32     if (this->layer_param_.param_size() == i) {
33       ParamSpec* fixed_param_spec = this->layer_param_.add_param();
34       fixed_param_spec->set_lr_mult(0.f);
35     } else {
36       CHECK_EQ(this->layer_param_.param(i).lr_mult(), 0.f)
37           << "Cannot configure batch normalization statistics as layer "
38           << "parameters.";
39     }
40   }
41 }

3. caffe中batch_norm_layer.cpp中的Reshape函数:

 1 void BatchNormLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
 2       const vector<Blob<Dtype>*>& top) {
 3   if (bottom[0]->num_axes() >= 1)
 4     CHECK_EQ(bottom[0]->shape(1), channels_);
 5   top[0]->ReshapeLike(*bottom[0]);     //batch_norm_layer.hpp对如下变量进行了定义:     //Blob<Dtype> mean_, variance_, temp_, x_norm_;     //blob<Dtype> batch_sum_multiplier_;     //blob<Dtype> sum_by_chans_;     //blob<Dtype> spatial_sum_multiplier_;
 6   vector<int> sz;
 7   sz.push_back(channels_);     //mean blob和variance blob的尺寸为channel
 8   mean_.Reshape(sz);
 9   variance_.Reshape(sz);     //temp_ blob和x_norm_ blob的尺寸、数据和输入blob相同
10   temp_.ReshapeLike(*bottom[0]);
11   x_norm_.ReshapeLike(*bottom[0]);     //sz[0]的值为N,batch_sum_multiplier_ blob的尺寸为N
12   sz[0] = bottom[0]->shape(0);
13   batch_sum_multiplier_.Reshape(sz);     //spatial_dim = N*C*H*W / C*N = H*W
14   int spatial_dim = bottom[0]->count()/(channels_*bottom[0]->shape(0));
15   if (spatial_sum_multiplier_.num_axes() == 0 ||
16       spatial_sum_multiplier_.shape(0) != spatial_dim) {
17     sz[0] = spatial_dim;       //spatial_sum_multiplier_的尺寸为H*W, 并且初始化为1
18     spatial_sum_multiplier_.Reshape(sz);
19     Dtype* multiplier_data = spatial_sum_multiplier_.mutable_cpu_data();
20     caffe_set(spatial_sum_multiplier_.count(), Dtype(1), multiplier_data);
21   }     //numbychans = C*N
22   int numbychans = channels_*bottom[0]->shape(0);
23   if (num_by_chans_.num_axes() == 0 ||
24       num_by_chans_.shape(0) != numbychans) {
25     sz[0] = numbychans;       //num_by_chans_的尺寸为C*N,并且初始化为1
26     num_by_chans_.Reshape(sz);
27     caffe_set(batch_sum_multiplier_.count(), Dtype(1),
28         batch_sum_multiplier_.mutable_cpu_data());
29   }
30 }

形象点说上面各blob变量的尺寸:

mean_和variance_:元素个数为channel的向量

temp_和x_norm_: 和输入blob的尺寸相同,为N*C*H*W

batch_sum_multiplier_: 元素个数为N的向量

spatial_sum_multiplier_: 元素个数为H*W的矩阵,并且每个元素的值为1

num_by_chans_:元素个数为C*N的矩阵,并且每个元素的值为1

4. caffe中batch_norm_layer.cpp中的Forward_cpu函数:

 1 void BatchNormLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
 2     const vector<Blob<Dtype>*>& top) {
 3   const Dtype* bottom_data = bottom[0]->cpu_data();
 4   Dtype* top_data = top[0]->mutable_cpu_data();     //num = N
 5   int num = bottom[0]->shape(0);     //spatial_dim = N*C*H*W/N*C = H*W
 6   int spatial_dim = bottom[0]->count()/(bottom[0]->shape(0)*channels_);
 7
 8   if (bottom[0] != top[0]) {
 9     caffe_copy(bottom[0]->count(), bottom_data, top_data);
10   }
11
12   if (use_global_stats_) {
13     // use the stored mean/variance estimates.       //在测试模式下,scale_factor=1/this->blobs_[2]->cpu_data()[0]
14     const Dtype scale_factor = this->blobs_[2]->cpu_data()[0] == 0 ?
15         0 : 1 / this->blobs_[2]->cpu_data()[0];       //mean_ blob = scale_factor * this->blobs_[0]->cpu_data()       //variance_ blob = scale_factor * this_blobs_[1]->cpu_data()       //因为blobs_变量定义在类中,所以每次调用某一batch norm层时,blobs_[0], blobs_[1], blobs_[2]都会更新
16     caffe_cpu_scale(variance_.count(), scale_factor,
17         this->blobs_[0]->cpu_data(), mean_.mutable_cpu_data());
18     caffe_cpu_scale(variance_.count(), scale_factor,
19         this->blobs_[1]->cpu_data(), variance_.mutable_cpu_data());
20   } else {
21     // compute mean       //在训练模式下计算一个batch的均值
22     caffe_cpu_gemv<Dtype>(CblasNoTrans, channels_ * num, spatial_dim,
23         1. / (num * spatial_dim), bottom_data,
24         spatial_sum_multiplier_.cpu_data(), 0.,
25         num_by_chans_.mutable_cpu_data());
26     caffe_cpu_gemv<Dtype>(CblasTrans, num, channels_, 1.,
27         num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0.,
28         mean_.mutable_cpu_data());
29   }
30  //由上面两步可以得到:无论是训练,还是测试模式下输入batch的均值     //对batch中的每个数据减去对应通道的均值
31   // subtract mean
32   caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1,
33       batch_sum_multiplier_.cpu_data(), mean_.cpu_data(), 0.,
34       num_by_chans_.mutable_cpu_data());
35   caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels_ * num,
36       spatial_dim, 1, -1, num_by_chans_.cpu_data(),
37       spatial_sum_multiplier_.cpu_data(), 1., top_data);
38
39   if (!use_global_stats_) {       //计算训练模式下的方差
40     // compute variance using var(X) = E((X-EX)^2)
41     caffe_sqr<Dtype>(top[0]->count(), top_data,
42                      temp_.mutable_cpu_data());  // (X-EX)^2
43     caffe_cpu_gemv<Dtype>(CblasNoTrans, channels_ * num, spatial_dim,
44         1. / (num * spatial_dim), temp_.cpu_data(),
45         spatial_sum_multiplier_.cpu_data(), 0.,
46         num_by_chans_.mutable_cpu_data());
47     caffe_cpu_gemv<Dtype>(CblasTrans, num, channels_, 1.,
48         num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0.,
49         variance_.mutable_cpu_data());  // E((X_EX)^2)
50
51     // compute and save moving average       //在训练阶段,由以上计算步骤可以得到:batch中每个channel的均值和方差       //blobs_[2] = 1 + blobs_[2]*moving_average_fraction_       //第一个batch时,blobs_[2]=0, 计算后的blobs_[2] = 1       //第二个batch时,blobs_[2]=1, 计算后的blobs_[2] = 1 + 1*moving_average_fraction_ = 1.9
52     this->blobs_[2]->mutable_cpu_data()[0] *= moving_average_fraction_;
53     this->blobs_[2]->mutable_cpu_data()[0] += 1;       //blobs_[0] = 1 * mean_ + moving_average_fraction_ * blobs_[0]       //其中mean_是本次batch的均值,blobs_[0]是上次batch的均值
54     caffe_cpu_axpby(mean_.count(), Dtype(1), mean_.cpu_data(),
55         moving_average_fraction_, this->blobs_[0]->mutable_cpu_data());       //m = N*C*H*W/C = N*H*W
56     int m = bottom[0]->count()/channels_;       //bias_correction_factor = m/m-1
57     Dtype bias_correction_factor = m > 1 ? Dtype(m)/(m-1) : 1;       //blobs_[1] = bias_correction_factor * variance_ + moving_average_fraction_ * blobs_[1]
58     caffe_cpu_axpby(variance_.count(), bias_correction_factor,
59         variance_.cpu_data(), moving_average_fraction_,
60         this->blobs_[1]->mutable_cpu_data());
61   }
62  //给上一步计算得到的方差加上一个常数eps_,防止方差作为分母在归一化的时候值出现为0的情况,同时开方63   // normalize variance
64   caffe_add_scalar(variance_.count(), eps_, variance_.mutable_cpu_data());
65   caffe_sqrt(variance_.count(), variance_.cpu_data(),
66              variance_.mutable_cpu_data());
67
68   // replicate variance to input size     //top_data目前保存的是输入blobs - mean的值,下面几行代码的意思是给每个元素除以对应方差
69   caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1,
70       batch_sum_multiplier_.cpu_data(), variance_.cpu_data(), 0.,
71       num_by_chans_.mutable_cpu_data());
72   caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels_ * num,
73       spatial_dim, 1, 1., num_by_chans_.cpu_data(),
74       spatial_sum_multiplier_.cpu_data(), 0., temp_.mutable_cpu_data());
75   caffe_div(temp_.count(), top_data, temp_.cpu_data(), top_data);
76   // TODO(cdoersch): The caching is only needed because later in-place layers
77   //                 might clobber the data.  Can we skip this if they won‘t?
78   caffe_copy(x_norm_.count(), top_data,
79       x_norm_.mutable_cpu_data());
80 }

caffe_cpu_gemv的原型为:

1 caffe_cpu_gemv<float>(const CBLAS_TRANSPOSE TransA, const int M, const int N, const float alpha, const float *A, const float *x, const float beta, float *y)

实现的功能是矩阵和向量相乘:Y = alpha * A * x + beta * Y

其中,A矩阵的维度为M*N, x向量的维度为N*1, Y向量的维度为M*1.

在训练阶段,forward cpu函数执行如下步骤:

(1) 均值计算,均值计算的过程如下,分为两步:

<1> 计算batch中每个元素的每个channel通道的和;

1 caffe_cpu_gemv<Dtype>(CblasNoTrans, channels_ * num, spatial_dim, 1. / (num * spatial_dim), bottom_data, spatial_sum_multiplier_.cpu_data(), 0., num_by_chans_.mutable_cpu_data());

其中:xN-1,C-1,H-1,W-1表示的含义为:N-1表示batch中的第N-1个样本,C-1表示该样本对应的第C-1个通道,H-1表示该通道中第H-1行,W-1表示该通道中第W-1列;

sumN-1,C-1表示的含义为:batch中第N-1个样本的第C-1个通道中所有元素之和。

<2> 计算batch中每个通道的均值:

1 caffe_cpu_gemv<Dtype>(CblasTrans, num, channels_, 1., num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0., mean_.mutable_cpu_data());

(2) 对batch中的每个数据减去其对应通道的均值;

<1> 得到均值矩阵

1 caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1, batch_sum_multiplier_.cpu_data(), mean_.cpu_data(), 0., num_by_chans_.mutable_cpu_data()); 

<2> 每个元素减去对应均值

1 caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels_ * num, spatial_dim, 1, -1, num_by_chans_.cpu_data(), spatial_sum_multiplier_.cpu_data(), 1., top_data); 

(3) 每个通道的方差计算,计算方式和均值的计算方式相同;

(4) 输入blob除以对应方差,得到归一化后的值。

原文地址:https://www.cnblogs.com/liangx-img/p/11726371.html

时间: 2024-11-08 21:28:23

caffe中batch norm源码阅读的相关文章

源码阅读笔记 - 1 MSVC2015中的std::sort

大约寒假开始的时候我就已经把std::sort的源码阅读完毕并理解其中的做法了,到了寒假结尾,姑且把它写出来 这是我的第一篇源码阅读笔记,以后会发更多的,包括算法和库实现,源码会按照我自己的代码风格格式化,去掉或者展开用于条件编译或者debug检查的宏,依重要程度重新排序函数,但是不会改变命名方式(虽然MSVC的STL命名实在是我不能接受的那种),对于代码块的解释会在代码块前(上面)用注释标明. template<class _RanIt, class _Diff, class _Pr> in

源码阅读经验谈-slim,darknet,labelimg,caffe(1)

本文首先谈自己的源码阅读体验,然后给几个案例解读,选的例子都是比较简单.重在说明我琢磨的点线面源码阅读方法.我不是专业架构师,是从一个深度学习算法工程师的角度来谈的,不专业的地方请大家轻拍. 经常看别人写的代码,然后改别人的代码,然后实现自己的想法,我想这是我们coder常干的事情.看人看代码,代码如人.他代码写的有多清爽简洁,说明他思维是清晰的:代码的结构有多合理,模块化内聚如何,是否低耦合,反应他的宏观把控能力.一个软件系统你可以把他看成是一个简单的企业,各个职能部门如何发挥自己的作用,相当

Android - 源码阅读 - Eclipse中在线阅读

在线阅读Android源码:grepcode 安装Eclipse GrepCode 插件:GrepCode Eclipse Plugin Help->Install New Software... Add: GrepCode http://repository.grepcode.com/java/ext-eclipse 使用 将鼠标置于需要查看的类名或者包上,然后按"F3",弹出 Class File Editor 显示对应class文件. 在Eclipse IDE 环境中在线查

vue中$watch源码阅读笔记

项目中使用了vue,一直在比较computed和$watch的使用场景,今天周末抽时间看了下vue中$watch的源码部分,也查阅了一些别人的文章,暂时把自己的笔记记录于此,供以后查阅: 实现一个简单的$watch: 1 const v = new Vue({ 2 data:{ 3 a: 1, 4 b: { 5 c: 3 6 } 7 } 8 }) 9 // 实例方法$watch,监听属性"a" 10 v.$watch("a",()=>console.log(&

Flume-NG源码阅读之SourceRunner,及选择器selector和拦截器interceptor的执行

在AbstractConfigurationProvider类中loadSources方法会将所有的source进行封装成SourceRunner放到了Map<String, SourceRunner> sourceRunnerMap之中.相关代码如下: 1 Map<String, String> selectorConfig = context.getSubProperties( 2 BasicConfigurationConstants.CONFIG_SOURCE_CHANNE

Flume-NG源码阅读之AvroSink

org.apache.flume.sink.AvroSink是用来通过网络来传输数据的,可以将event发送到RPC服务器(比如AvroSource),使用AvroSink和AvroSource可以组成分层结构.它继承自AbstractRpcSink  extends AbstractSink implements Configurable这跟其他的sink一样都得extends AbstractSink implements Configurable,所以重点也在confgure.start.

【Java】【Flume】Flume-NG源码阅读之AvroSink

org.apache.flume.sink.AvroSink是用来通过网络来传输数据的,可以将event发送到RPC服务器(比如AvroSource),使用AvroSink和AvroSource可以组成分层结构.它继承自AbstractRpcSink  extends AbstractSink implements Configurable这跟其他的sink一样都得extends AbstractSink implements Configurable,所以重点也在confgure.start.

Flume-NG源码阅读之HBaseSink

关于HBase的sink的所有内容均在org.apache.flume.sink.hbase包下. 每个sink包括自己定制的,都extends AbstractSink implements Configurable. 一.首先是configure(Context context)方法.该方法是对HBaseSink的参数初始化.主要包括以下几个: tableName:要写入的HBase数据表名,不能为空: columnFamily:数据表对应的列簇名,这个sink目前只支持一个列簇,不能为空:

【原】FMDB源码阅读(二)

[原]FMDB源码阅读(二) 本文转载请注明出处 -- polobymulberry-博客园 1. 前言 上一篇只是简单地过了一下FMDB一个简单例子的基本流程,并没有涉及到FMDB的所有方方面面,比如FMDB的executeUpdate:系列方法.数据库的加解密等等.这次写的就是对FMDatabase和FMResultSet这两个文件的补全内容.每次写这种补全的内容最头疼,内容会很分散,感觉没啥条理. 2. executeUpdate:系列函数 注意除了"SELECT"语句外,其他的