深入浅出 Java Concurrency(二)—锁机制(一)

前面的章节主要谈谈原子操作,至于与原子操作一些相关的问题或者说陷阱就放到最后的总结篇来整体说明。从这一章开始花少量的篇幅谈谈锁机制。

上一个章节 中谈到了锁机制,并且针对于原子操作谈了一些相关的概念和设计思想。接下来的文章中,尽可能的深入研究锁机制,并且理解里面的原理和实际应用场合。

尽管synchronized在语法上已经足够简单了,在JDK 5之前只能借助此实现,但是由于是独占锁,性能却不高,因此JDK 5以后就开始借助于JNI来完成更高级的锁实现。

JDK 5中的锁是接口java.util.concurrent.locks.Lock 。另外java.util.concurrent.locks.ReadWriteLock 提供了一对可供读写并发的锁。根据前面的规则,我们从java.util.concurrent.locks.Lock 的API开始。

void lock();

获取锁。

如果锁不可用,出于线程调度目的,将禁用当前线程,并且在获得锁之前,该线程将一直处于休眠状态。

void lockInterruptibly() throws InterruptedException;

如果当前线程未被中断,则获取锁。

如果锁可用,则获取锁,并立即返回。

如果锁不可用,出于线程调度目的,将禁用当前线程,并且在发生以下两种情况之一以前,该线程将一直处于休眠状态:

  • 锁由当前线程获得;或者
  • 其他某个线程中断 当前线程,并且支持对锁获取的中断。

如果当前线程:

  • 在进入此方法时已经设置了该线程的中断状态;或者
  • 在获取锁时被中断 ,并且支持对锁获取的中断,

则将抛出  InterruptedException ,并清除当前线程的已中断状态。

Condition newCondition();

返回绑定到此  Lock   实例的新  Condition   实例。下一小节中会重点谈Condition,此处不做过多的介绍。

boolean tryLock();

仅在调用时锁为空闲状态才获取该锁。

如果锁可用,则获取锁,并立即返回值  true 。如果锁不可用,则此方法将立即返回值  false 。

通常对于那些不是必须获取锁的操作可能有用。

boolean tryLock(long time, TimeUnit unit) throws InterruptedException;

如果锁在给定的等待时间内空闲,并且当前线程未被中断,则获取锁。

如果锁可用,则此方法将立即返回值  true 。如果锁不可用,出于线程调度目的,将禁用当前线程,并且在发生以下三种情况之一前,该线程将一直处于休眠状态:

  • 锁由当前线程获得;或者
  • 其他某个线程中断当前线程,并且支持对锁获取的中断;或者
  • 已超过指定的等待时间

如果获得了锁,则返回值  true 。

如果当前线程:

  • 在进入此方法时已经设置了该线程的中断状态;或者
  • 在获取锁时被中断,并且支持对锁获取的中断,

则将抛出  InterruptedException ,并会清除当前线程的已中断状态。

如果超过了指定的等待时间,则将返回值  false 。如果 time 小于等于 0,该方法将完全不等待。

void unlock();

释放锁。对应于lock()、tryLock()、tryLock(xx)、lockInterruptibly()等操作,如果成功的话应该对应着一个unlock(),这样可以避免死锁或者资源浪费。

相对于比较空洞的API,来看一个实际的例子。下面的代码实现了一个类似于AtomicInteger的操作。

package xylz.study.concurrency.lock;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class AtomicIntegerWithLock {

private int value;

private Lock lock = new ReentrantLock();

public AtomicIntegerWithLock() {
        super();
    }

public AtomicIntegerWithLock(int value) {
        this.value = value;
    }

public final int get() {
        lock.lock();
        try {
            return value;
        } finally {
            lock.unlock();
        }
    }

public final void set(int newValue) {
        lock.lock();
        try {
            value = newValue;
        } finally {
            lock.unlock();
        }

}

public final int getAndSet(int newValue) {
        lock.lock();
        try {
            int ret = value;
            value = newValue;
            return ret;
        } finally {
            lock.unlock();
        }
    }

public final boolean compareAndSet(int expect, int update) {
        lock.lock();
        try {
            if (value == expect) {
                value = update;
                return true;
            }
            return false;
        } finally {
            lock.unlock();
        }
    }

public final int getAndIncrement() {
        lock.lock();
        try {
            return value++;
        } finally {
            lock.unlock();
        }
    }

public final int getAndDecrement() {
        lock.lock();
        try {
            return value--;
        } finally {
            lock.unlock();
        }
    }

public final int incrementAndGet() {
        lock.lock();
        try {
            return ++value;
        } finally {
            lock.unlock();
        }
    }

public final int decrementAndGet() {
        lock.lock();
        try {
            return --value;
        } finally {
            lock.unlock();
        }
    }

public String toString() {
        return Integer.toString(get());
    }
}

AtomicIntegerWithLock 是线程安全的,此结构中大量使用了Lock对象的lock/unlock方法对。同样可以看到的是对于自增和自减操作使用了++/--。之所以能够保证线程安全,是因为Lock对象的lock()方法保证了只有一个线程能够只有此锁。需要说明的是对于任何一个lock()方法,都需要一个unlock()方法与之对于,通常情况下为了保证unlock方法总是能够得到执行,unlock方法被置于finally块中。另外这里使用了java.util.concurrent.locks.ReentrantLock.ReentrantLock 对象,下一个小节中会具体描述此类作为Lock的唯一实现是如何设计和实现的。

尽管synchronized实现Lock的相同语义,并且在语法上比Lock要简单多,但是前者却比后者的开销要大得多。做一个简单的测试。

public static void main(String[] args) throws Exception{
     final int max = 10;
     final int loopCount = 100000;
     long costTime = 0;
     for (int m = 0; m < max; m++) {
         long start1 = System.nanoTime();
         final AtomicIntegerWithLock value1 = new AtomicIntegerWithLock(0);
         Thread[] ts = new Thread[max];
         for(int i=0;i<max;i++) {
             ts[i] = new Thread() {
                 public void run() {
                     for (int i = 0; i < loopCount; i++) {
                         value1.incrementAndGet();
                     }
                 }
             };
         }
         for(Thread t:ts) {
             t.start();
         }
         for(Thread t:ts) {
             t.join();
         }
         long end1 = System.nanoTime();
         costTime += (end1-start1);
     }
     System.out.println("cost1: " + (costTime));
     //
     System.out.println();
     costTime = 0;
     //
     final Object lock = new Object();
     for (int m = 0; m < max; m++) {
         staticValue=0;
         long start1 = System.nanoTime();
         Thread[] ts = new Thread[max];
         for(int i=0;i<max;i++) {
             ts[i] = new Thread() {
                 public void run() {
                     for (int i = 0; i < loopCount; i++) {
                         synchronized(lock) {
                             ++staticValue;
                         }
                     }
                 }
             };
         }
         for(Thread t:ts) {
             t.start();
         }
         for(Thread t:ts) {
             t.join();
         }
         long end1 = System.nanoTime();
         costTime += (end1-start1);
     }
     //
     System.out.println("cost2: " + (costTime));
}

static int staticValue = 0;

在这个例子中每次启动10个线程,每个线程计算100000次自增操作,重复测试10次,下面是某此测试的结果:

cost1: 624071136

cost2: 2057847833

尽管上面的例子不是非常正式的测试案例,但上面的例子在于说明,Lock的性能比synchronized的要好得多。如果可以的话总是使用Lock替代synchronized是一个明智的选择。

时间: 2024-10-05 04:08:02

深入浅出 Java Concurrency(二)—锁机制(一)的相关文章

深入浅出 Java Concurrency (9): 锁机制 part 4[转]

本小节介绍锁释放Lock.unlock(). Release/TryRelease unlock操作实际上就调用了AQS的release操作,释放持有的锁. public final boolean release(int arg) {    if (tryRelease(arg)) {        Node h = head;        if (h != null && h.waitStatus != 0)            unparkSuccessor(h);       

深入浅出 Java Concurrency (15): 锁机制 part 10 锁的一些其它问题[转]

主要谈谈锁的性能以及其它一些理论知识,内容主要的出处是<Java Concurrency in Practice>,结合自己的理解和实际应用对锁机制进行一个小小的总结. 首先需要强调的一点是:所有锁(包括内置锁和高级锁)都是有性能消耗的,也就是说在高并发的情况下,由于锁机制带来的上下文切换.资源同步等消耗是非常可观的.在某些极端情况下,线程在锁上的消耗可能比线程本身的消耗还要多.所以如果可能的话,在任何情况下都尽量少用锁,如果不可避免那么采用非阻塞算法是一个不错的解决方案,但是却也不是绝对的.

深入浅出 Java Concurrency (6): 锁机制 part 1[转]

前面的章节主要谈谈原子操作,至于与原子操作一些相关的问题或者说陷阱就放到最后的总结篇来整体说明.从这一章开始花少量的篇幅谈谈锁机制. 上一个章节中谈到了锁机制,并且针对于原子操作谈了一些相关的概念和设计思想.接下来的文章中,尽可能的深入研究锁机制,并且理解里面的原理和实际应用场合. 尽管synchronized在语法上已经足够简单了,在JDK 5之前只能借助此实现,但是由于是独占锁,性能却不高,因此JDK 5以后就开始借助于JNI来完成更高级的锁实现. JDK 5中的锁是接口java.util.

深入浅出 Java Concurrency (7): 锁机制 part 2 AQS[转]

在理解J.U.C原理以及锁机制之前,我们来介绍J.U.C框架最核心也是最复杂的一个基础类:java.util.concurrent.locks.AbstractQueuedSynchronizer. AQS AbstractQueuedSynchronizer,简称AQS,是J.U.C最复杂的一个类,导致绝大多数讲解并发原理或者实战的时候都不会提到此类.但是虚心的作者愿意借助自己有限的能力和精力来探讨一二(参考资源中也有一些作者做了部分的分析.). 首先从理论知识开始,在了解了相关原理后会针对源

深入浅出 Java Concurrency (12): 锁机制 part 7 信号量(Semaphore)[转]

Semaphore 是一个计数信号量.从概念上讲,信号量维护了一个许可集.如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可.每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者.但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动. 说白了,Semaphore是一个计数器,在计数器不为0的时候对线程就放行,一旦达到0,那么所有请求资源的新线程都会被阻塞,包括增加请求到许可的线程,也就是说Semaphore不是可重

深入浅出 Java Concurrency (13): 锁机制 part 8 读写锁 (ReentrantReadWriteLock) (1)[转]

从这一节开始介绍锁里面的最后一个工具:读写锁(ReadWriteLock). ReentrantLock 实现了标准的互斥操作,也就是一次只能有一个线程持有锁,也即所谓独占锁的概念.前面的章节中一直在强调这个特点.显然这个特点在一定程度上面减低了吞吐量,实际上独占锁是一种保守的锁策略,在这种情况下任何“读/读”,“写/读”,“写/写”操作都不能同时发生.但是同样需要强调的一个概念是,锁是有一定的开销的,当并发比较大的时候,锁的开销就比较客观了.所以如果可能的话就尽量少用锁,非要用锁的话就尝试看能

深入浅出 Java Concurrency (8): 锁机制 part 3[转]

接上篇,这篇从Lock.lock/unlock开始.特别说明在没有特殊情况下所有程序.API.文档都是基于JDK 6.0的. public void java.util.concurrent.locks.ReentrantLock.lock() 获取锁. 如果该锁没有被另一个线程保持,则获取该锁并立即返回,将锁的保持计数设置为 1. 如果当前线程已经保持该锁,则将保持计数加 1,并且该方法立即返回. 如果该锁被另一个线程保持,则出于线程调度的目的,禁用当前线程,并且在获得锁之前,该线程将一直处于

深入浅出 Java Concurrency (11): 锁机制 part 6 CyclicBarrier[转]

如果说CountDownLatch是一次性的,那么CyclicBarrier正好可以循环使用.它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point).所谓屏障点就是一组任务执行完毕的时刻. 清单1 一个使用CyclicBarrier的例子 package xylz.study.concurrency.lock; import java.util.concurrent.BrokenBarrierException;import java.util.concur

深入浅出 Java Concurrency (10): 锁机制 part 5 闭锁 (CountDownLatch)[转]

此小节介绍几个与锁有关的有用工具. 闭锁(Latch) 闭锁(Latch):一种同步方法,可以延迟线程的进度直到线程到达某个终点状态.通俗的讲就是,一个闭锁相当于一扇大门,在大门打开之前所有线程都被阻断,一旦大门打开所有线程都将通过,但是一旦大门打开,所有线程都通过了,那么这个闭锁的状态就失效了,门的状态也就不能变了,只能是打开状态.也就是说闭锁的状态是一次性的,它确保在闭锁打开之前所有特定的活动都需要在闭锁打开之后才能完成. CountDownLatch是JDK 5+里面闭锁的一个实现,允许一