Storm+HBase实时实践

1.HBase Increment计数器

 hbase counter的原理: read+count+write,正好完成,就是讲key的value读出,若存在,则完成累加,再写入,若不存在,则按“0”处理,再加上你需要累加的值。

  传统上,如果没有 counter,当我们要给一个 column 的值 +1 或者其他数值时,就需要先从该 column 读取值,然后在客户端修改值,最后写回给 Region Server,即一个 Read-Modify-Write (RMW) 操作。在这样的过程中,按照 Lars 的描述1,还需要对操作所在的 row 事先加锁,事后解锁。会引起许多 contention,以及随之而来很多问题。而 HBase 的 increment 接口就保证在 Region Server 端原子性的完成一个客户端请求。

   RMW 操作的代码:

db.read (table,keyname,fields, new HashMap < String,String > ( ) ) ;db.update (table,keyname,values ) ;

  它并没有对所操作的 row 进行加锁、解锁操作,而是简单的读取改写。这在 counter 的应用场景中是不可接受的。不加锁在大并发情况下,很容易导致 counter 的值与预期不符。

  HBase 引入 Increment/Counter 是非常重要的,对某些需要原子性更改操作的应用来说则是“致命”的。除了单个 increment 的接口 incrementColumnValue() 外,还有批量 increment 的接口increment(Increment),方便客户端调用。

  除此之外,HBase 还在进行 Coprocessor 的开发,使计算直接在 Region Server 上进行,省去了繁琐耗时的数据移动。

使用方法:

long incrementColumnValue(byte[] row, byte[] family, byte[] qualifier,long amount) throws IOException

  

时间: 2024-10-05 16:22:37

Storm+HBase实时实践的相关文章

大数据Storm开发实时数据分析平台视频教程

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv

STORM在线业务实践-集群空闲CPU飙高问题排查

源:http://daiwa.ninja/index.php/2015/07/18/storm-cpu-overload/ 2015-07-18AUTHORDAIWA STORM在线业务实践-集群空闲CPU飙高问题排查有2条评论 STORM在线业务实践-集群空闲CPU飙高问题排查 最近将公司的在线业务迁移到Storm集群上,上线后遇到低峰期CPU耗费严重的情况.在解决问题的过程中深入了解了storm的内部实现原理,并且解决了一个storm0.9-0.10版本一直存在的严重bug,目前代码已经合并

基于Storm构建实时热力分布项目实战

详情请交流  QQ  709639943 01.基于Storm构建实时热力分布项目实战 02.以慕课网日志分析为例 进入大数据 Spark SQL 的世界 03.Spring Cloud微服务实战视频课程 04.漫谈spring cloud 与 spring boot 基础架构 05.Java秒杀系统方案优化 高性能高并发实战 06.Java深入微服务原理改造房产销售平台 07.快速上手Linux 玩转典型应用 08.漫谈spring cloud分布式服务架构 09.Java Spring Se

使用Storm实现实时大数据分析

摘要:随着数据体积的越来越大,实时处理成为了许多机构需要面对的首要挑战.Shruthi Kumar和Siddharth Patankar在Dr.Dobb’s上结合了汽车超速监视,为我们演示了使用Storm进行实时大数据分析.CSDN在此编译.整理. 简单和明了,Storm让大数据分析变得轻松加愉快. 当今世界,公司的日常运营经常会生成TB级别的数据.数据来源囊括了互联网装置可以捕获的任何类型数据,网站.社交媒体.交易型商业数据以及其它商业环境中创建的数据.考虑到数据的生成量,实时处理成为了许多机

storm准实时应用

文章出处:http://blog.csdn.net/lili72/article/details/42246671 1 应用背景: 需要实时统计用户的登陆数,在线人数,活跃时间,下载等指标的数据,或者清洗后移到hdfs上. 2 设计架构: 1) 客户端产生数据--- 2) kafka-生产者实时采集数据(保留7天)----- 3) storm实时消费数据,处理数据 4)把实时数据统计结果缓存到memcached 中 5) 把数据保存到mysql 3 组件之间的通信. 3.1  客户端发送数据--

kafka+storm+hbase

kafka+storm+hbase实现计算WordCount. (1)表名:wc (2)列族:result (3)RowKey:word (4)Field:count 1.解决: (1)第一步:首先准备kafka.storm和hbase相关jar包.依赖如下: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance&qu

【转】HBase业务实践

原文链接 http://rdc.taobao.org/?p=457 HBase业务实践 2013/07/10 by 师允 · Leave a comment 源作者:我们团队最闷骚的武祖哥 适合读者 2012年因为业务需求,我们的底层数据库从Mysql迁移到HBase上面,正好也亲身经历了HBase-Client从0.92到0.94变化.我们总结了一些业务上面使用HBase的办法,希望本文能够对业务上面刚刚使用HBase的人一些帮助,降低入门门槛. 准备工作 HBase Toturial,需要对

Storm分布式实时流计算框架相关技术总结

Storm分布式实时流计算框架相关技术总结 Storm作为一个开源的分布式实时流计算框架,其内部实现使用了一些常用的技术,这里是对这些技术及其在Storm中作用的概括介绍.以此为基础,后续再深入了解Storm的内部实现细节. 1. Zookeeper集群 Zookeeper是一个针对大型分布式系统的可靠协调服务系统,其采用类似Unix文件系统树形层次结构的数据模型(如:/zoo/a,/zoo/b),节点内可存储少量数据(<1M,当节点存储大数据量时,实际应用中可能出现同步问题). Zookeep

PL2121-基于Storm构建实时热力分布项目实战

新年伊始,学习要趁早,点滴记录,学习就是进步! 不要到处找了,抓紧提升自己. 对于学习有困难不知道如何提升自己可以加扣:1225462853 获取资料. 下载地址:https://pan.baidu.com/s/1o9rZpj0 基于Storm构建实时热力分布项目实战 Storm是实时流处理领域的一柄利器,本课程采用最新的Storm版本1.1.0,从0开始由浅入深系统讲解,深入Storm内部机制,掌握Storm整合周边大数据框架的使用,从容应对大数据实时流处理! 谢谢大家的支持,我会努力给大家分