Reading comprehension HDU - 4990

Read the program below carefully then answer the question. 
#pragma comment(linker, "/STACK:1024000000,1024000000") 
#include <cstdio> 
#include<iostream> 
#include <cstring> 
#include <cmath> 
#include <algorithm> 
#include<vector>

const int MAX=100000*2; 
const int INF=1e9;

int main() 

  int n,m,ans,i; 
  while(scanf("%d%d",&n,&m)!=EOF) 
  { 
    ans=0; 
    for(i=1;i<=n;i++) 
    { 
      if(i&1)ans=(ans*2+1)%m; 
      else ans=ans*2%m; 
    } 
    printf("%d\n",ans); 
  } 
  return 0; 
}

InputMulti test cases,each line will contain two integers n and m. Process to end of file. 
[Technical Specification] 
1<=n, m <= 1000000000OutputFor each case,output an integer,represents the output of above program.Sample Input

1 10
3 100

Sample Output

1
5

直接利用源程序暴力打出 1,2,5,10,21,42 找出规律 fn = fn-1 + 2*fn-2+1

数据比较大,直接求矩阵快速幂。

推出 转化矩阵为:

1 2 1
1 0 0
0 0 1

 初始矩阵为

1 2 1

 直接上代码:

//Asimple
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <queue>
#include <vector>
#include <string>
#include <cstring>
#include <stack>
#include <set>
#include <map>
#include <cmath>
#define swap(a,b,t) t = a, a = b, b = t
#define CLS(a, v) memset(a, v, sizeof(a))
#define test() cout<<"============"<<endl
#define debug(a)  cout << #a << " = "  << a <<endl
#define dobug(a, b)  cout << #a << " = "  << a << " " << #b << " = " << b << endl
using namespace std;
typedef long long ll;
const int N=3;
//const ll MOD=10000007;
const int INF = ( 1<<20 );
const double PI=atan(1.0)*4;
const int maxn = 10+5;
const ll mod = 10005;
int n, m, len, ans, sum, v, w, T, num;
int MOD;

struct Matrix {
    long long grid[N][N];
    int row,col;
    Matrix():row(N),col(N) {
        memset(grid, 0, sizeof grid);
    }
    Matrix(int row, int col):row(row),col(col) {
        memset(grid, 0, sizeof grid);
    }

    //矩阵乘法
    Matrix operator *(const Matrix &b) {
        Matrix res(row, b.col);
        for(int i = 0; i<res.row; i++)
            for(int j = 0; j<res.col; j++)
                for(int k = 0;k<col; k++)
                    res[i][j] = (res[i][j] + grid[i][k] * b.grid[k][j] + MOD) % MOD;
        return res;
    }

    //矩阵快速幂
    Matrix operator ^(long long exp) {
        Matrix res(row, col);
        for(int i = 0; i < row; i++)
            res[i][i] = 1;
        Matrix temp = *this;
        for(; exp > 0; exp >>= 1, temp = temp * temp)
            if(exp & 1) res = temp * res;
        return res;
    }

    long long* operator[](int index) {
        return grid[index];
    }

    void print() {

        for(int i = 0; i <row; i++) {
            for(int j = 0; j < col-1; j++)
                printf("%d ",grid[i][j]);
            printf("%d\n",grid[i][col-1]);
        }
    }
};

void input(){
    ios_base::sync_with_stdio(false);
    while( cin >> n >> MOD ) {
        Matrix A;
        A[0][0] = A[0][2] = 1;
        A[0][1] = 2;
        A[1][0] = A[2][2] = 1;
        A = A^n;
        Matrix B;
        B[0][0] = B[0][2] = 1;
        B[0][1] = 2;
        A = A*B;
        if( n%2 ) cout << A[0][0] << endl;
        else cout << A[1][1] << endl;
    }
}

int main(){
    input();
    return 0;
}
时间: 2024-09-27 01:44:37

Reading comprehension HDU - 4990的相关文章

Reading comprehension HDU - 4990 (矩阵快速幂 or 快速幂+等比数列)

for(i=1;i<=n;i++) { if(i&1)ans=(ans*2+1)%m; else ans=ans*2%m; } 给定n,m.让你用O(log(n))以下时间算出ans. 打表,推出 ans[i] = 2^(i-1) + f[i-2] 故 i奇数:ans[i] = 2^(i-1) + 2^(i-3) ... + 1; i偶数:ans[i] = 2^(i-1) + 2^(i-3) ... + 2; 故可以用等比数列求和公式. 公式涉及除法.我也没弄懂为啥不能用逆元,貌似说是啥逆元

HDU 4990 Reading comprehension (找规律+矩阵快速幂)

题目链接:HDU 4990 Reading comprehension 题目给的一个程序其实就是一个公式:当N=1时 f[n]=1,当n>1时,n为奇数f[n]=2*f[n-1]+1,n为偶数f[n]=2*f[n-1]. 先不取模,计算前十个找规律.得到一个递推公式:f[n]=2*f[n-2]+f[n-1]+1 然后快速幂解决之. 给出一个神奇的网站(找数列通项):http://oeis.org/ AC代码: #include<stdio.h> #include<string.h&

hdu-4990 Reading comprehension(快速幂+乘法逆元)

题目链接: Reading comprehension Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others) Problem Description Read the program below carefully then answer the question.#pragma comment(linker, "/STACK:1024000000,1024000000"

hdu 4990(数学,等比数列求和)

Reading comprehension Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1270    Accepted Submission(s): 512 Problem Description Read the program below carefully then answer the question.#pragma co

HDU 4990 Reading comprehension(找规律+矩阵快速幂)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4990 Problem Description Read the program below carefully then answer the question. #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include<iostream> #include

hdu 4990 Reading comprehension(等比数列法)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4990 思路:曾经有一个矩阵乘法的做法请戳这儿.. . . 開始我们把数都不模... 能够得到一个规律 n:1        ans:1      4^0                          n:2     ans:2         2*(4^0) 2                 5      4^0+4^1                        4           

hdu 4990 Reading comprehension

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4990 思路:题目难点就是找矩阵..... code: #include<cstdio> #include<iostream> #include<cstring> using namespace std; typedef long long LL; struct Matrix { LL x[5][5]; friend Matrix operator*(Matrix &

HDU 4990 Reading comprehension (矩阵快速幂)

题意:给一个数列a[i]=2a[i-1](如果i是偶数) a[i]=2a[i-1]+1(如果i是奇数):求a[n]%m (1<=n, m <= 1000000000) 思路:明显用矩阵快速幂,可以推出通项:a[n]=2*a[n-2]+a[n-1]+1 当然并不需要动脑...直接当成偶数处理就好,是奇数的话单独再递推一项就好.也就是a[i]=4a[i-2]+2 //4990 0MS 1620K 1196 B C++ #include<cstdio> #include<iostr

hdu 4990 Reading comprehension (矩阵快速幂)

题意:读程序,找规律 思路:我们把程序输出发现序列为1,2,5,10,21,42,85,170,递推式f(n)=2*f(n-2)+f(n-1)+1 代码: #include <iostream> #include <cstdio> #include <algorithm> #include <cmath> #define ll long long using namespace std; const int N=3,M=3,P=3; ll mod; stru