Description
bobo has a sequence a 1,a
2,…,a n. He is allowed to swap two
adjacent numbers for no more than k times.
Find the minimum number of inversions after his swaps.
Note: The number of inversions is the number of pair (i,j) where 1≤i<j≤n and a
i>a j.
Input
The input consists of several tests. For each tests:
The first line contains 2 integers n,k (1≤n≤10 5,0≤k≤10
9). The second line contains n integers a
1,a 2,…,a
n (0≤a i≤10
9).
Output
For each tests:
A single integer denotes the minimum number of inversions.
Sample Input
3 1 2 2 1 3 0 2 2 1
Sample Output
1 2 题意: 给你n个数a1,a2,a3...an,要你求出它的逆序数,但是可以交换相邻的两个数不超过k次,要你求出最小逆序数。 思路: 如果用普通的搜索肯定会超时,这时我们可以考虑用归并排序,参考算法竞赛与入门经典(第二版)中的P225-227,求出其逆序数,但这并不是最后的结果,因为题目要求是求出最小逆序数,我们可以这样想,每交换一次(相邻两个数前面的数比后面的数大),逆序数小于一,所以先求出未交换之前的逆序数,然后再减去k,如果逆序数大于0,这就是最后结果,如果小于0,说明最后交换肯定是达到从小到大的排列顺序,逆序数就为0. 代码:#include<cstdio> #include<cstring> #include<algorithm> int A[500004],T[500004]; long long cnt; using namespace std; void init(int n) { for(int i=0;i<n;i++) scanf("%d",&A[i]); } void merge_sort(int *A,int x,int y,int *T) { if(y-x>1) { int m=x+(y-x)/2; int p=x,q=m,i=x; merge_sort(A,x,m,T); merge_sort(A,m,y,T); while(p<m||q<y) { if(q>=y||(p<m&&A[p]<=A[q])) T[i++]=A[p++]; else { T[i++]=A[q++]; cnt+=m-p; } } for(i=x;i<y;i++) A[i]=T[i]; } } int main() { int n,k; while(scanf("%d%d",&n,&k)!=EOF) { init(n); cnt=0; memset(T,0,sizeof(T)); merge_sort(A,0,n,T);//不能把n写成n-1,否则会答案错误 if(cnt-k>=0) cnt=cnt-k; else cnt=0; printf("%I64d\n",cnt); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
时间: 2024-11-10 11:18:48