原文地址:http://blog.csdn.net/markl22222/article/details/10313565
进行了修正和变量优化。原来作者的函数只支持2次方图片,这次修正了(windows的bitmap行宽是4字节对齐的)。
基本完善了,但是在某些条件下,Y方向的底边还是会出现偏差,一时找不到原因,暂且发表,希望有人能提醒一下。
函数结构我规整了一下,很清晰,很好阅读。
int gauss_blur( byte_t* image, //位图数据 int linebytes, //位图行字节数,BMP数据在windows中是4字节对齐的。否则在处理非二次幂的图像时会有偏差 int width, //位图宽度 int height, //位图高度 int cbyte, //颜色通道数量 float sigma //高斯系数 ) { int x = 0, y = 0, n = 0; int channel = 0; int srcline = 0, dstline = 0; int channelsize = width*height; int bufsize = width > height ? width + 4 : height + 4; float *w1 = NULL, *w2 = NULL, *imgbuf = NULL; int time = 0; #if defined(_INC_WINDOWS) time = GetTickCount(); #elif defined(_CLOCK_T) time = clock(); #endif w1 = (float*)malloc(bufsize * sizeof(float)); if(!w1) { return -1; } w2 = (float*)malloc(bufsize * sizeof(float)); if(!w2) { free(w1); return -1; } imgbuf = (float*)malloc(channelsize * sizeof(float)); if(!imgbuf) { free(w1); free(w2); return -1; } //----------------计算高斯核---------------------------------------// float q = 0; float q2 = 0, q3 = 0; float b0 = 0, b1 = 0, b2 = 0, b3 = 0; float B = 0; if (sigma >= 2.5f) { q = 0.98711f * sigma - 0.96330f; } else if ((sigma >= 0.5f) && (sigma < 2.5f)) { q = 3.97156f - 4.14554f * (float) sqrt (1.0f - 0.26891f * sigma); } else { q = 0.1147705018520355224609375f; } q2 = q * q; q3 = q * q2; b0 = (1.57825+ (2.44413f*q)+(1.4281f *q2)+(0.422205f*q3)); b1 = ( (2.44413f*q)+(2.85619f*q2)+(1.26661f* q3)); b2 = ( -((1.4281f*q2)+(1.26661f* q3))); b3 = ( (0.422205f*q3)); B = 1.0-((b1+b2+b3)/b0); b1 /= b0; b2 /= b0; b3 /= b0; //----------------计算高斯核结束---------------------------------------// <span style="white-space:pre"> </span>// 处理图像的多个通道 for (channel = 0; channel < cbyte; ++channel) { // 获取一个通道的所有像素值,并预处理 for(y=0; y<height; ++y) { srcline = y*linebytes; dstline = y*width; for(x=0, n=channel; x<width; ++x, n+=cbyte) { (imgbuf+dstline)[x] = float((image+srcline)[n]) + 1.0f; } } for (int x=0; x<width; ++x) {//横向处理 w1[0] = (imgbuf + x)[0]; w1[1] = (imgbuf + x)[0]; w1[2] = (imgbuf + x)[0]; for (y=0; y<height; ++y) { w1[y+3] = B*(imgbuf + x)[y*width] + (b1*w1[y+2] + b2*w1[y+1] + b3*w1[y+0]); } w2[width+0]= w1[width+2]; w2[width+1]= w1[width+1]; w2[width+2]= w1[width+0]; for (int y=height-1; y>=0; --y) { (imgbuf + x)[y*width] = w2[y] = B*w1[y+3] + (b1*w2[y+1] + b2*w2[y+2] + b3*w2[y+3]); } }//横向处理 for (y=0 ; y<height; ++y) {//纵向处理 srcline = y * width; dstline = y * linebytes; //取当前行数据 w1[0] = (imgbuf + srcline)[0]; w1[1] = (imgbuf + srcline)[0]; w1[2] = (imgbuf + srcline)[0]; //正方向横向处理3个点的数据 for (x=0; x<width ; ++x) { w1[x+3] = B*(imgbuf + srcline)[x] + (b1*w1[x+2] + b2*w1[x+1] + b3*w1[x+0]); } w2[width+0]= w1[width+2]; w2[width+1]= w1[width+1]; w2[width+2]= w1[width+0]; //反方向处理 for (x=width-1; x>=0; --x) { //(imgbuf + dstline)[x] = w2[x] = B*w1[x+3] + (b1*w2[x+1] + b2*w2[x+2] + b3*w2[x+3]); w2[x] = B*w1[x+3] + (b1*w2[x+1] + b2*w2[x+2] + b3*w2[x+3]); //存储返回数据 (image + dstline)[x * cbyte + channel] = w2[x]-1; } }//纵向处理 /* //存储处理完毕的通道 for(int y=0; y<height; y++) { int dstline = y*linebytes; int srcline = y*width; for (int x=0; x<width; x++) { //(image + dstline)[x * cbyte + channel] = (imgbuf + srcline)[x]-1; //byte_comp((imgbuf + srcline)[x]-1); } }//存储循环 //*/ }//通道循环 free (w1); free (w2); free(imgbuf); #if defined(_INC_WINDOWS) return GetTickCount() - time; #elif defined(_CLOCK_T) return clock() - time; #else return 0; #endif }
快速高斯滤波函数[修正完善版]
时间: 2024-10-13 12:02:43