最大权闭合图 && 【BZOJ】1497: [NOI2006]最大获利

最大权闭合图详细请看胡伯涛论文《最小割模型在信息学竞赛中的应用》,我在这里截图它的定义以及一些东西。

假设我们有一个图,点集的出边都是连到点集的,那么称这个为闭合图。现在这些点集都有个权值,我们要选择某个闭合图使得权值最大。

回到此题:

最大获利这一题,我们可以这样看,用户群和中转站为带权的点集,用户群的权为收益,中转站的权为负的成本,即0-成本,用户群向其中两个中转站连弧,那么这个就是一个闭合图。

我们要求这个闭合图的权值和最大,即最大收益,那么就能转移到上面的求最大权闭合图的做法去了。

做法就是:

  1. 从源s连弧到正权值的点,容量为次正权值。
  2. 从负权值的点连弧到汇t,容量为负权值的绝对值。
  3. 在闭合图中所有的弧换成容量为oo的弧。
  4. 答案就是所有正权值的和-最小割的容量(最大流)

那么此题就解决了。

(注意范围啊。,。。我又RE了一次,,好多次都是数组开小了啊>A<。)

#include <cstdio>
using namespace std;
const int N=60000, M=350000, oo=1000000000;
#define min(a,b) ((a)<(b)?(a):(b))
int ihead[N], inext[M], from[M], to[M], cap[M], cnt=1;
int cur[N], gap[N], d[N], p[N];

int isap(int s, int t, int n) {
	int i, maxflow=0, f, u;
	for(i=0; i<=n; ++i) cur[i]=ihead[i];
	gap[0]=n; u=s;
	while(d[s]<n) {
		for(i=cur[u]; i; i=inext[i]) if(d[to[i]]+1==d[u] && cap[i]) break;
		if(i) {
			cur[u]=i; p[to[i]]=i; u=to[i];
			if(u==t) {
				for(f=oo; u!=s; u=from[p[u]]) f=min(f, cap[p[u]]);
				for(u=t; u!=s; u=from[p[u]]) cap[p[u]]-=f, cap[p[u]^1]+=f;
				maxflow+=f;
			}
		}
		else {
			if(!(--gap[d[u]])) break;
			d[u]=n;
			for(i=ihead[u]; i; i=inext[i]) if(cap[i] && d[u]>d[to[i]]+1)
				d[u]=d[to[i]]+1, cur[u]=i;
			++gap[d[u]]; if(u!=s) u=from[p[u]];
		}
	}
	return maxflow;
}

void add(int u, int v, int c) {
	inext[++cnt]=ihead[u]; ihead[u]=cnt; from[cnt]=u; to[cnt]=v; cap[cnt]=c;
	inext[++cnt]=ihead[v]; ihead[v]=cnt; from[cnt]=v; to[cnt]=u; cap[cnt]=0;
}

int main() {
	int n, m, sum=0;
	scanf("%d%d", &n, &m);
	int i, a, b, c;
	for(i=1; i<=n; ++i) {
		scanf("%d", &c);
		add(m+i, n+m+1, c);
	}
	for(i=1; i<=m; ++i) {
		scanf("%d%d%d", &a, &b, &c);
		sum+=c;
		add(i, m+a, oo); add(i, m+b, oo);
		add(0, i, c);
	}
	printf("%d\n", sum-isap(0, n+m+1, n+m+2));
	return 0;
}

最大权闭合图 && 【BZOJ】1497: [NOI2006]最大获利

时间: 2024-10-05 04:58:42

最大权闭合图 && 【BZOJ】1497: [NOI2006]最大获利的相关文章

bzoj 1497: [NOI2006]最大获利

1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5499  Solved: 2671[Submit][Status][Discuss] Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究.站址勘测.最优化等项目.在前期市场调查和站址勘测之后,公司得

BZOJ 1497: [NOI2006]最大获利( 最大流 )

下午到周六早上是期末考试...但是我还是坚守在机房....要挂的节奏啊.... 这道题就是网络流 , 建图后就最大流跑啊跑啊跑... ------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #define rep( i ,

bzoj 1497: [NOI2006]最大获利 -- 最小割

1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MB Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究.站址勘测.最优化等项目.在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要

bzoj 1497 [NOI2006]最大获利【最大权闭合子图+最小割】

不要被5s时限和50000点数吓倒!大胆网络流!我一个5w级别的dinic只跑了1s+! 看起来没有最大权闭合子图的特征--限制,实际上还是有的. 我们需要把中转站看成负权点,把p看成点权,把客户看成正权点,把c看成点权,然后把中转站点a.b作为客户点的依赖点 s点向所有正权点连边,流量为点权:所有负权点向t连边,流量为负点权(即正数!) 对于所有有依赖关系的点,由客户点向中转站点连边,流量为inf,也就是最大权闭合子图中的向其依赖点连边 连边的意义详见:http://www.cnblogs.c

【最大权闭合子图】BZOJ1497[NOI2006]-最大获利

[题目大意] 建立第i个通讯中转站需要的成本为Pi(1≤i≤N).另外公司调查得出了所有期望中的用户群,一共M个.关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司可以获益Ci.(1≤i≤M, 1≤Ai, Bi≤N) THU集团的CS&T公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和).那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 - 投入成本之和) [思路] 根据最大权闭合子图的

BZOJ 1497 [NOI2006]最大获利 【最大流】

Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究.站址勘测.最优化等项目.在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N).另外公

BZOJ 1497 JZYZOJ 1344 [NOI2006]最大获利 网络流 最大权闭合图

http://www.lydsy.com/JudgeOnline/problem.php?id=1497 http://172.20.6.3/Problem_Show.asp?id=1344 思路:(最大权闭合图的思路相同) 将所有的用户群获利(正值)作为一个点连一条权值为获利值的边到st点,将所有的建站消耗(输入的是正值但是是在获利中减去的所以实质还是负值)作为一个点连一条权值为消耗值的边到ed点,再将每个用户群点和其依赖的建站点连一条权值为无穷的边,求st到ed的最大流. 此时,所求的最大获

BZOJ 1565 植物大战僵尸(最大权闭合图)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1565 题意:植物大战僵尸,一个n*m的格子,每 个格子里有一个植物,每个植物有两个属性:(1)价值:(2)保护集合,也就是这个植物可以保护矩阵中的某些格子.现在你是僵尸,你每次只能从(i,m) 格子进入,从右向左进攻.若一个格子是被保护的那么你是不能进入的.每进入一个格子则吃掉该格子的植物并得到其价值(价值有可能是负的).注意,每次在进 入一行后还可以再退到最右侧然后再换一行吃别的.问

1497: [NOI2006]最大获利(最大权闭合子图)

1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5503  Solved: 2673 Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究.站址勘测.最优化等项目.在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这