51nod 1185 威佐夫游戏 V2

思路:

威佐夫博弈 + 乘法模拟。

实现:

 1 #include <iostream>
 2 #include <cstdio>
 3 using namespace std;
 4 typedef long long ll;
 5
 6 const ll tmp[3] = { 618033988, 749894848, 204586834 };
 7 const ll mod = 1e9;
 8
 9 int main()
10 {
11     int t;
12     ll a, b;
13     cin >> t;
14     while (t--)
15     {
16         cin >> a >> b;
17         if (a < b)
18             swap(a, b);
19         ll x = a - b;
20         ll c = a - b;
21         ll p = c / mod, l = c % mod;
22         ll a1 = l * tmp[2];
23         ll a2 = p * tmp[2] + l * tmp[1] + a1 / mod;
24         ll a3 = p * tmp[1] + l * tmp[0] + a2 / mod;
25         ll a4 = c + p * tmp[0] + a3 / mod;
26         cout << (a4 == b ? ‘B‘ : ‘A‘) << endl;
27     }
28     return 0;
29 }
时间: 2024-12-07 21:18:25

51nod 1185 威佐夫游戏 V2的相关文章

51NOD 1185 威佐夫游戏 V2(博弈论 + 减少精度)

传送门 有2堆石子.A B两个人轮流拿,A先拿.每次可以从一堆中取任意个或从2堆中取相同数量的石子,但不可不取.拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出2堆石子的数量,问最后谁能赢得比赛. 例如:2堆石子分别为3颗和5颗.那么不论A怎样拿,B都有对应的方法拿到最后1颗. Input 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 10000) 第2 - T + 1行:每行2个数分别是2堆石子的数量,中间用空格分隔.(1 <=

(博弈论 高精度小数)51NOD 1185 威佐夫游戏 V2

有2堆石子.A B两个人轮流拿,A先拿.每次可以从一堆中取任意个或从2堆中取相同数量的石子,但不可不取.拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出2堆石子的数量,问最后谁能赢得比赛. 例如:2堆石子分别为3颗和5颗.那么不论A怎样拿,B都有对应的方法拿到最后1颗. Input 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 10000) 第2 - T + 1行:每行2个数分别是2堆石子的数量,中间用空格分隔.(1 <= N &

1185 威佐夫游戏 V2

1185 威佐夫游戏 V2 有2堆石子.A B两个人轮流拿,A先拿.每次可以从一堆中取任意个或从2堆中取相同数量的石子,但不可不取.拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出2堆石子的数量,问最后谁能赢得比赛. 例如:2堆石子分别为3颗和5颗.那么不论A怎样拿,B都有对应的方法拿到最后1颗. 输入 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 10000) 第2 - T + 1行:每行2个数分别是2堆石子的数量,中间用空格分隔.(

51Nod 1072 威佐夫游戏

题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1072 有2堆石子.A B两个人轮流拿,A先拿.每次可以从一堆中取任意个或从2堆中取相同数量的石子,但不可不取.拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出2堆石子的数量,问最后谁能赢得比赛. 例如:2堆石子分别为3颗和5颗.那么不论A怎样拿,B都有对应的方法拿到最后1颗. Input 第1行:一个数T,表示后面用作输入测试

51nod 1185 威佐夫博奕

有2堆石子.A B两个人轮流拿,A先拿.每次可以从一堆中取任意个或从2堆中取相同数量的石子,但不可不取.拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出2堆石子的数量,问最后谁能赢得比赛. 例如:2堆石子分别为3颗和5颗.那么不论A怎样拿,B都有对应的方法拿到最后1颗. Input 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 10000) 第2 - T + 1行:每行2个数分别是2堆石子的数量,中间用空格分隔.(1 <= N &

1072 威佐夫游戏

1072 威佐夫游戏 基准时间限制:1 秒 空间限制:131072 KB 有2堆石子.A B两个人轮流拿,A先拿.每次可以从一堆中取任意个或从2堆中取相同数量的石子,但不可不取.拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出2堆石子的数量,问最后谁能赢得比赛. 例如:2堆石子分别为3颗和5颗.那么不论A怎样拿,B都有对应的方法拿到最后1颗. Input 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 10000) 第2 - T + 1行

51nod 1185 || 51nod 1072 威佐夫博弈

贴个模板:平常的跟高精度java的: int: #pragma comment(linker, "/STACK:1024000000,1024000000") #include<iostream> #include<cstdio> #include<cmath> #include<string> #include<queue> #include<algorithm> #include<stack> #i

HDU 1527 取石子游戏 威佐夫博弈

题目来源:HDU 1527 取石子游戏 题意:中文 思路:威佐夫博弈 必败态为 (a,b ) ai + i = bi     ai = i*(1+sqrt(5.0)+1)/2   这题就求出i然后带人i和i+1判断是否成立 以下转自网上某总结 有公式ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,-,n 方括号表示取整函数) 其中出现了黄金分割数(1+√5)/2 = 1.618-,因此,由ak,bk组成的矩形近似为黄金矩形 由于2/(1+√5)=(√5-1)/2,可以先

poj1067-取石子游戏 (威佐夫博弈) 【博弈】

http://poj.org/problem?id=1067 取石子游戏 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 36753   Accepted: 12446 Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如