论文笔记之:MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching

MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching

CVPR  2015

  本来都写到一半了,突然笔记本死机了,泪崩!好吧,重新写!本文提出了一种联合的学习patch表示的一个深度网络鲁棒的特征比较的网络结构。与传统的像SIFT特征点利用欧氏距离进行距离计算的方式不同,本文是利用全连接层,通过学习到的距离度量来表示两个描述符的相似性。

  本文的贡献点如下:

  1. 提出了一个新的利用深度网络架构基于patch的匹配来明显的改善了效果;

  2. 利用更少的描述符,得到了比state-of-the-art更好的结果;

  3. 实验研究了该系统的各个成分的有效作用,表明,MatchNet改善了手工设计 和 学习到的描述符加上对比函数;

  4. 最后,作者 release 了训练的 MatchNet模型。

  首先来看本文的网络架构:

  主要有如下几个成分:

  A. Feature Network.

  主要用于提取输入patch的特征,主要根据AlexNet改变而来,

  

时间: 2024-10-16 07:01:47

论文笔记之:MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching的相关文章

配置和运行 MatchNet CVPR 2015 MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching

配置和运行 MatchNet CVPR 2015 GitHub: https://github.com/hanxf/matchnet 最近一个同学在配置,测试这个网络,但是总是遇到各种问题. 我也尝试了一下,结果也是一堆问题. 这里记录一下. 问题1.  ImportError: No module named leveldb [email protected]:~/Downloads/matchnet-master$ ./run_gen_data.sh Traceback (most rece

论文笔记之:Multiple Feature Fusion via Weighted Entropy for Visual Tracking

Multiple Feature Fusion via Weighted Entropy for Visual Tracking ICCV 2015 本文主要考虑的是一个多特征融合的问题.如何有效的进行加权融合,是一个需要解决的问题.本文提出一种新的 data-adaptive visual tracking approach 通过 weighted entropy 进行多特征融合.并非像许多方法所做的简单的链接在一起的方法,本文采用加权的 entropy 来评价目标状态和背景状态之间的区分性,

论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation

Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google 官方 Blog 链接:https://research.googleblog.com/2016/10/graph-powered-machine-learning-at-google.html 今天讲的是一个基于 streaming approximation 的大规模分布式半监督学习框架,出自 Google . 摘要:众所周

论文笔记之: Deep Metric Learning via Lifted Structured Feature Embedding

Deep Metric Learning via Lifted Structured Feature Embedding CVPR 2016 摘要:本文提出一种距离度量的方法,充分的发挥 training batches 的优势,by lifting the vector of pairwise distances within the batch to the matrix of pairwise distances. 刚开始看这个摘要,有点懵逼,不怕,后面会知道这段英文是啥意思的. 引言部分

论文笔记 Deep Patch Learning for Weakly Supervised Object Classi cation and Discovery

Background 1) "Patch-level image representation"的优势 "Patch-level image representation is very important for object classification and detection, since it is robust to spatial transformation, scale variation, and cluttered background" &

Twitter 新一代流处理利器——Heron 论文笔记之Heron架构

Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture Heron 架构如下图: 用户编写发布topoloy到Aurora调度器.每一个topology都作为一个Aurora的job在运行.每一个job包括几个container,这些container由Aurora来分配和调度.第一个container作为Topology Master,其他的Cont

【转】Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现

原作者:zouxy09 原文链接:http://blog.csdn.net/zouxy09/article/details/9993371 Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 [email protected] http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己

Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 [email protected] http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不

Deep Learning Face Representation from Predicting 10,000 Classes论文笔记

Deep Learning Face Representation from Predicting 10,000 Classes论文笔记(2015.03.24) 一.基本思路 作者利用卷积神经网络(Convolutional Neural Network,CNN)对大量样本进行训练,提取Deep hidden identity feature(DeepID)特征,然后利用这些特征进行人脸验证(Face Verification).在LFW(Labeled Faces in the Wild)库上