线性筛-mobius,强大O(n)

首先,你要知道什么是莫比乌斯函数

然后,你要知道什么是积性函数

最后,你最好知道什么是线性筛

莫比乌斯反演

积性函数

线性筛,见上一篇

知道了,就可以愉快的写mobius函数了

由定义:

μ(n)=   1          (n=1)

(-1)^k   (n=p1p2...pk)  /*  注意质因子次数为1因为次数大于等于2则含有平方因子  */

0          (其他)

为什么关系平方因子呢?

因为,由定义:

/*
莫比乌斯函数完整定义的通俗表达:
1)莫比乌斯函数μ(n)的定义域是N
2)μ(1)=1
3)当n存在平方因子时,μ(n)=0
4)当n是素数,μ(n)=-1
5)当n是奇数个不同素数之积时,μ(n)=-1
6)当n是偶数个不同素数之积时,μ(n)=1
*/

Hint

由μ函数本身的积性

所以对于其他情况,只需要O(1)的从  mu[i] -> mu[i*p[j]] 就可以了

mu[i*p[j]]=-mu[i];

综上所述:

const int maxn=50000+10;
int mu[maxn],p[maxn],flag[maxn],cnt;
void mobius(int n){
  mu[1]=1;
  for(int i=2;i<=n;i++){
    if(!flag[i])p[++cnt]=i,mu[i]=-1;
    for(int j=1;j<=cnt && i*p[j]<=n;j++){
      flag[i*p[j]]=1;
      if(i%p[j]==0){mu[i*p[j]]=0;break;}
      mu[i*p[j]]=-mu[i];
    }
  }
}

mobius

时间: 2024-10-16 16:11:56

线性筛-mobius,强大O(n)的相关文章

线性筛-euler,强大O(n)

欧拉函数是少于或等于n的数中与n互质的数的数目 φ(1)=1(定义) 类似与莫比乌斯函数,基于欧拉函数的积性 φ(xy)=φ(x)φ(y) 由唯一分解定理展开显然,得证 精髓在于对于积性的应用: if(i%p[j]==0){phi[i*p[j]]=phi[i]*p[j];break;} phi[i*p[j]]=phi[i]*(p[j]-1); 一个练手题Hdu1286 1 #include <algorithm> 2 #include <iostream> 3 #include &

jzp线性筛及其简单应用

前言: 很久以前看过了线性筛,没怎么注意原理,但是后来发现线性筛还有很有用的.. 比如上次做的一道题就需要找出每个数的最小质因子,先筛再找就太慢了..一看线性筛发现就可以直接在筛的过程中处理出来了! 今天又学习了屌炸天的jzp线性筛,可以在o(n)的时间内求出欧拉函数, 莫比乌斯函数等积性函数 原理: 首先jzp线性筛并不是一种新的线性筛..其实就是jzp大牛对线性筛的一些开发应用 先回忆一下积性函数的定义 若a,b互质 则f(ab)=f(a)*f(b)的函数f 定义为积性函数,不要求a,b互质

[bzoj2440]完全平方数[中山市选2011][莫比乌斯函数][线性筛][二分答案]

题意:求第k个分解质因子后质因子次数均为一的数,即求第k个无平方因子数. 题解: 首先二分答案mid,那么现在就是要求出mid以内的无平方因子数的个数. 其次枚举$\sqrt{mid}$内的所有质数,由容斥原理 $Num=0个质数平方的倍数的数量(1的倍数)-1个质数平方的倍数的数量(9,25...的倍数)$ $+2个质数平方的倍数的数量(36,100...的倍数)...$ 可以发现对于一个数x,x的倍数数量对答案的贡献符号为$\mu(x)$. 例如:9的倍数数量最答案的贡献是$\mu(9)\l

数论线性筛总结 (素数筛,欧拉函数筛,莫比乌斯函数筛,前n个数的约数个数筛)

线性筛 线性筛在数论中起着至关重要的作用,可以大大降低求解一些问题的时间复杂度,使用线性筛有个前提(除了素数筛)所求函数必须是数论上定义的积性函数,即对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时f(ab)=f(a)f(b),在数论上就称它为积性函数,若a,b不互质也满足的话则称作完全积性函数,下面说明每个筛子是怎么筛的. 最基础的是素数筛,其它三个筛都是以素数筛为前提 素数筛 void get_prime() { int pnum = 0; for(int i = 2;

bzoj 3309 DZY Loves Math - 莫比乌斯反演 - 线性筛

对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b). Input 第一行一个数T,表示询问数. 接下来T行,每行两个数a,b,表示一个询问. Output 对于每一个询问,输出一行一个非负整数作为回答. Sample Input 4 7558588 9653114 6514903 445

BZOJ 2693: jzptab [莫比乌斯反演 线性筛]

2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1194  Solved: 455[Submit][Status][Discuss] Description Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的结果 Sample Input 1 4 5 Sample Output 122 HINT T <= 10000 N, M<=1000000

* SPOJ PGCD Primes in GCD Table (需要自己推线性筛函数,好题)

题目大意: 给定n,m,求有多少组(a,b) 0<a<=n , 0<b<=m , 使得gcd(a,b)= p , p是一个素数 这里本来利用枚举一个个素数,然后利用莫比乌斯反演可以很方便得到答案,但是数据量过大,完全水不过去 题目分析过程(从别人地方抄来的) ans = sigma(p, sigma(d, μ(d) * (n/pd) * (m/pd))) Let s = pd, then ans = sigma(s, sigma(p, μ(s/p) * (n/s) * (m/s))

[原博客] 关于线性筛

埃氏筛法:从2开始,找到第一个没有被筛的数,把它标记为素数,然后把它的2倍.3倍……筛掉.复杂度O(nlogn). 改进的埃氏筛法:从2开始,找到第一个没有被筛的数x,把它标记为素数,然后把它的x倍.x+1倍……筛掉.复杂度O(nloglogn). 线性筛:保证每个数都被它的最小素因子筛掉.复杂度O(n). C++写起来大概是这样的: int mindiv[10000005],tot,prime[10000050]; int main(){ for(int i=2;i<=10000000;i++

[BZOJ2818] Gcd (数论,欧拉函数,线性筛)

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 必须用线性筛. 1 #include <bits/stdc++.h> 2 using namespace std; 3 typedef long long LL; 4 const int maxn = 10001001; 5 LL phi[maxn], sum[maxn], n; 6 bool isprime[maxn]; 7 LL prime[maxn]; 8 int tot;