Euler's totient function

https://en.wikipedia.org/wiki/Euler‘s_totient_function

counts the positive integers up to a given integer n that are relatively prime to n.

if two numbers m and n are relatively prime, then φ(mn) = φ(m) φ(n);

https://zh.wikipedia.org/wiki/同餘

数学上,同余(英语:congruence modulo[1]符號:≡)是數論中的一種等價關係[2]。當两个整数以同一个整数,若得相同余数,则二整数同余。同餘是抽象代數中的同餘關係的原型[3]。最先引用同余的概念与「≡」符号者为德國数学家高斯

https://en.wikipedia.org/wiki/Modular_multiplicative_inverse

In modular arithmetic, the modular multiplicative inverse of an integer a modulo m is

an integer x such that  a x ≡ 1 ( mod m ) .

Euler's totient function

时间: 2024-12-28 07:07:28

Euler's totient function的相关文章

Project Euler:Problem 69 Totient maximum

Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number of numbers less than n which are relatively prime to n. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9

Project Euler:Problem 70 Totient permutation

Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number of positive numbers less than or equal to n which are relatively prime to n. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relative

Problem D. Euler Function

Problem D. Euler Function 题目: Problem D. Euler Function http://acm.hdu.edu.cn/showproblem.php?pid=6324 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)Total Submission(s): 66    Accepted Submission(s): 64 Problem

2018HDU多校训练-3-Problem D. Euler Function

链接:http://acm.hdu.edu.cn/showproblem.php?pid=6322 Problem Description In number theory, Euler's totient function φ(n) counts the positive integers up to a given integer n that are relatively prime to n . It can be defined more formally as the number

hdu-5597 GTW likes function(欧拉函数+找规律)

题目链接: GTW likes function Time Limit: 4000/2000 MS (Java/Others)     Memory Limit: 131072/131072 K (Java/Others) Problem Description Now you are given two definitions as follows. f(x)=∑xk=0(−1)k22x−2kCk2x−k+1,f0(x)=f(x),fn(x)=f(fn−1(x))(n≥1) Note that

欧拉工程第70题:Totient permutation

题目链接 和上面几题差不多的 Euler's Totient function, φ(n) [sometimes called the phi function]:小于等于n的数并且和n是互质的数的个数 存在这样的数:N的欧拉数φ(n),是N的一个排列 例如:φ(87109)=79180 求在1---10^7中n/φ(n) 取到最小的 n 是多少? 这里的是p是n的素因子,当素因子有相同的时候只取一个 任意一个正整数都能分解成若干个素数乘积的形式 直接利用上题的phi函数就可以求解 这个是跑的最

hdu 4002 Find the maximum

Find the maximum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)Total Submission(s): 1731    Accepted Submission(s): 742 Problem Description Euler's Totient function, φ (n) [sometimes called the phi function], is u

欧拉函数之和(51nod 1239)

对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi(8) = 4),因为1,3,5,7均和8互质. S(n) = Phi(1) + Phi(2) + ...... Phi(n),给出n,求S(n),例如:n = 5,S(n) = 1 + 1 + 2 + 2 + 4 = 10,定义Phi(1) = 1.由于结果很大,输出Mod 1000000007的结

51nod 1136 欧拉函数

1136 欧拉函数 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi(8) = 4),因为1,3,5,7均和8互质. Input 输入一个数N.(2 <= N <= 10^9) Output 输出Phi(n). Input示例 8 Output示例 4